
7

Introduction

8

Home Computer@2004: Home Computer@2004:

Predicted versus Real

Predicted in 1954Predicted in 1954

RealityReality

9

A Computer (Level 0 Version)

Central

Processing

Unit (CPU)

Storage

Peripherals

Output

Peripherals

Input

Peripherals

Main

Memory

10

I/O and Peripherals: Examples

 Input Devices

!Keyboard, Mouse, Digital Camera

 Output Devices

!Monitor, Printer, Speaker

 Storage Peripherals

!Magnetic Disks: hard disk

!Optical Disks: CDROM, CD-RW, DVD

! Flash Memory: pen drives

11

Memory: Address and Values

12

CPU: A first cut

PC

IR

MAR

MDR

ALU

R1

R2

R3

R4 FLAGS

13

What can a computer do

 Determining if a given integer is a prime number

 A Palindrome recognizer

 Read in airline route information as a matrix and determine the
shortest time journey between two airports

 Telephone pole placement problem

 Patriot Missile Control

 Finger-print recognition

 Chess Player

 Speech Recognition

 Language Recognition

 Discovering New Laws in Mathematics

 Automatic drug discovery

 …..

14

Programming and Software

Computer needs to be programmed to do such
tasks

Programming is the process of writing
instructions in a language that can be
understood by the computer so that a desired
task can be performed by it

Program: sequence of instructions to do a task,
computer processes the instructions
sequentially one after the other

Software: programs for doing tasks on computers

15

Contd.

 CPU understands machine language

!Different strings of 0’s and 1’s only!!

!Hard to remember and use

 Instruction set of a CPU

!Mnemonic names for this strings

16

Instruction Set

 Start
 Read M
 Write M
 Load Data, M
 Copy M1, M2
 Add M1, M2, M3
 Sub M1, M2, M3
 Compare M1, M2, M3
 Jump L
 J_Zero M, L
 Halt

17

Instruction Set

 Start
 Read M
 Write M
 Load Data, M
 Copy M1, M2
 Add M1, M2, M3
 Sub M1, M2, M3
 Compare M1, M2, M3
 Jump L
 J_Zero M, L
 Halt

0: Start

1: Read 10

2: Read 11

3: Add 10, 11, 12

4: Write 12

5: Halt

Program

18

Problems with programming using

instruction sets directly

 Instruction sets of different types of CPUs
different

!Need to write different programs for computers with
different types of CPUs even to do the same thing

 Still hard to remember

 Solution: High level languages (C, C++,
Java,…)

!CPU neutral, one program for many

!Compiler to convert from high-level program to low
level program that CPU understands

19

High-Level Program
Variables x, y;
Begin
Read (x);
Read (y);
If (x >y) then Write (x)

else Write (y);
End.

20

High-Level Program 0: Start
1: Read 20
2: Read 21
3: Compare 20, 21, 22
4: J_Zero 22, 7
5: Write 20
6: Jump 8
7: Write 21
8: Halt

Variables x, y;
Begin
Read (x);
Read (y);
If (x >y) then Write (x)

else Write (y);
End.

Low-Level Program

21

Three steps in writing programs

Step 1: Write the program in a high-level

language (in your case, C)

Step 2: Compile the program using a C

compiler

Step 3: Run the program (as the computer

to execute it)

22

Binary Representation

 Numbers are represented inside computers in

the base-2 system (Binary Numbers)

!Only two symbols/digits 0 and 1

!Positional weights of digits: 20, 21, 22,…from right to

left for integers

 Decimal number system we use is base-10

! 10 digits, from 0 to 9, Positional weights 100, 101,

102,…from right to left for integers

!Example: 723 = 3x100 + 2x101 + 7x102

23

Binary Numbers

Dec Binary

0 0

1 1

2 10

3 11

4 100

5 101

6 110

7 111

8 1000

24

Binary Numbers

Binary to Decimal Conversion

101011 " 1x25 + 0x24 + 1x23 + 0x22 + 1x21 + 1x20

= 43

(101011)2 = (43)10

111001 " 1x25 + 1x24 + 1x23 + 0x22 + 0x21 + 1x20

= 57

(111001)2 = (57)10

10100 " 1x24 + 0x23 + 1x22 + 0x21 + 0x20 = 20

(10100)2 = (20)10

Dec Binary

0 0

1 1

2 10

3 11

4 100

5 101

6 110

7 111

8 1000

25

Bits and Bytes

 Bit – a single 1 or 0

 Byte – 8 consecutive bits

! 2 bytes = 16 bits

! 4 bytes = 32 bits

 Max. integer that can represented

! in 1 byte = 255 (=11111111)

! In 4 bytes = 4294967295 (= 32 1’s)

 No. of integers that can be represented in 1 byte
= 256 (the integers 0, 1, 2, 3,….255)

26

Fundamentals of C

27

First C program – print on screen

#include <stdio.h>

void main()

{

printf ("Hello, World! \n") ;

}

28

More print

#include <stdio.h>

void main()

{

printf ("Hello, World! ") ;

printf ("Hello \n World! \n") ;

}

29

Some more print

#include <stdio.h>

void main()

{

printf ("Hello, World! \n") ;

printf ("Hello \n World! \n") ;

printf ("Hell\no \t World! \n") ;

}

30

#include <stdio.h>

void main()

{

int num ;

scanf ("%d", &num) ;

printf (“No. of students is %d\n”, num) ;

}

Reading values from keyboard

31

Centigrade to Fahrenheit

#include <stdio.h>

void main()

{

float cent, fahr;

scanf(“%f”,¢);

fahr = cent*(9.0/5.0) + 32;

printf(“%f C equals %f F\n”, cent, fahr);

}

32

Largest of two numbers

#include <stdio.h>

void main()

{

int x, y;

scanf(“%d%d”,&x,&y);

if (x>y) printf(“Largest is %d\n”,x);

else printf(“Largest is %d\n”,y);

}

largest-1.c

33

What does this do?

#include <stdio.h>

void main()

{

int x, y;

scanf(“%d%d”,&x,&y);

if (x>y) printf(“Largest is %d\n”,x);

printf(“Largest is %d\n”,y);

}

largest-2.c

34

The C Character Set

 The C language alphabet
!Uppercase letters ‘A’ to ‘Z’

! Lowercase letters ‘a’ to ‘z’

!Digits ‘0’ to ‘9’

!Certain special characters:

A C program should not contain anything else

! # % ^ & * ()

- _ + = ~ [] \

| ; : ‘ “ { } ,

. < > / ? blank

35

Structure of a C program

 A collection of functions (we will see what they

are later)

 Exactly one special function named main must

be present. Program always starts from there

 Each function has statements (instructions) for

declaration, assignment, condition check,

looping etc.

 Statements are executed one by one

36

Variables

 Very important concept for programming

 An entity that has a value and is known to the

program by a name

 Can store any temporary result while executing a

program

 Can have only one value assigned to it at any given

time during the execution of the program

 The value of a variable can be changed during the

execution of the program

37

Contd.

 Variables stored in memory

 Remember that memory is a list of storage

locations, each having a unique address

 A variable is like a bin

! The contents of the bin is the value of the variable

! The variable name is used to refer to the value of

the variable

!A variable is mapped to a location of the memory,

called its address

38

Example

#include <stdio.h>

void main()

{

int x;

int y;

x=1;

y=3;

printf("x = %d, y= %d\n", x, y);

}

39

Variables in Memory

Instruction executed Memory location allocated

to a variable X

T

i

m

e

X = 10

10X = 20

X = X +1

X = X*5

40

Variables in Memory

Instruction executed Memory location allocated

to a variable X

T

i

m

e

X = 10

20X = 20

X = X +1

X = X*5

41

Variables in Memory

Instruction executed Memory location allocated

to a variable X

T

i

m

e

X = 10

21X = 20

X = X +1

X = X*5

42

Variables in Memory

Instruction executed
Memory location allocated

to a variable X

T

i

m

e

X = 10

105X = 20

X = X +1

X = X*5

43

Variables (contd.)

20

?

X

Y

X = 20

Y=15

X = Y+3

Y=X/6

44

Variables (contd.)

20

15

X

Y

X = 20

Y=15

X = Y+3

Y=X/6

45

Variables (contd.)

18

15

X

Y

X = 20

Y=15

X = Y+3

Y=X/6

46

Variables (contd.)

18

3

X

Y

X = 20

Y=15

X = Y+3

Y=X/6

47

Data Types
 Each variable has a type, indicates what

type of values the variable can hold

 Four common data types in C

! int - can store integers (usually 4 bytes)

! float - can store single-precision floating

point numbers (usually 4 bytes)

!double - can store double-precision floating

point numbers (usually 8 bytes)

!char - can store a character (1 byte)

48

Contd.

 Must declare a variable (specify its type and

name) before using it anywhere in your program

 All variable declarations should be at the

beginning of the main() or other functions

 A value can also be assigned to a variable at the

time the variable is declared.

int speed = 30;

char flag = ‘y’;

49

Variable Names

 Sequence of letters and digits

 First character must be a letter or ‘_’

 No special characters other than ‘_’

 No blank in between

 Names are case-sensitive (max and Max are two
different names)

 Examples of valid names:

! i rank1 MAX max Min class_rank

 Examples of invalid names:

! a’s fact rec 2sqroot class,rank

More Valid and Invalid Identifiers

 Valid identifiers

X

abc

simple_interest

a123

LIST

stud_name

Empl_1

Empl_2

avg_empl_salary

 Invalid identifiers

10abc

my-name

“hello”

simple interest

(area)

%rate

C Keywords

 Used by the C language, cannot be used

as variable names

 Examples:

! int, float, char, double, main, if else, for, while.

do, struct, union, typedef, enum, void, return,

signed, unsigned, case, break, sizeof,….

!There are others, see textbook…

52

Example 1

#include <stdio.h>

void main()

{

int x, y, sum;

scanf(“%d%d”,&x,&y);

sum = x + y;

printf(“%d plus %d is %d\n”, x, y, sum);

}

Three int type variables declared

Values assigned

53

Example - 2

#include <stdio.h>

void main()

{

float x, y;

int d1, d2 = 10;

scanf(“%f%f%d”,&x, &y, &d1);

printf(“%f plus %f is %f\n”, x, y, x+y);

printf(“%d minus %d is %d\n”, d1, d2, d1-d2);

}

Assigns an initial value to d2,

can be changed later

54

Read-only variables

 Variables whose values can be initialized during

declaration, but cannot be changed after that

 Declared by putting the const keyword in front of

the declaration

 Storage allocated just like any variable

 Used for variables whose values need not be

changed

!Prevents accidental change of the value

55

void main() {

const int LIMIT = 10;

int n;

scanf(“%d”, &n);

if (n > LIMIT)

printf(“Out of limit”);

}

void main() {

const int Limit = 10;

int n;

scanf(“%d”, &n);

Limit = Limit + n;

printf(“New limit is %d”,

Limit);

}

Correct

Incorrect: Limit changed

56

Constants

 Integer constants

!Consists of a sequence of digits, with possibly a plus
or a minus sign before it

!Embedded spaces, commas and non-digit characters
are not permitted between digits

 Floating point constants

 Two different notations:

!Decimal notation: 25.0, 0.0034, .84, -2.234

!Exponential (scientific) notation

3.45e23, 0.123e-12, 123e2

e means “10 to the power of”

57

Contd.

 Character constants

!Contains a single character enclosed within a pair of

single quote marks.

!Examples :: ‘2’, ‘+’, ‘Z’

 Some special backslash characters

‘\n’ new line

‘\t’ horizontal tab

‘\’’ single quote

‘\”’ double quote

‘\\’ backslash

‘\0’ null

58

Input: scanf function
 Performs input from keyboard

 It requires a format string and a list of variables into
which the value received from the keyboard will be
stored

 format string = individual groups of characters
(usually ‘%’ sign, followed by a conversion
character), with one character group for each
variable in the list

int a, b;

float c;

scanf(“%d %d %f”, &a, &b, &c);

Format string

Variable list (note the &

before a variable name)

59

! Commonly used conversion characters

c for char type variable

d for int type variable

f for float type variable

lf for double type variable

!Examples

scanf ("%d", &size) ;

scanf ("%c", &nextchar) ;

scanf ("%f", &length) ;

scanf (“%d%d”, &a, &b);

60

Reading a single character

 A single character can be read using scanf with
%c

 It can also be read using the getchar() function

char c;

c = getchar();

 Program waits at the getchar() line until a
character is typed, and then reads it and stores it
in c

61

Output: printf function

 Performs output to the standard output device

(typically defined to be the screen)

 It requires a format string in which we can

specify:

!The text to be printed out

!Specifications on how to print the values

printf ("The number is %d\n", num);

!The format specification %d causes the value

listed after the format string to be embedded in

the output as a decimal number in place of %d

!Output will appear as: The number is 125

62

Contd.

 General syntax:

printf (format string, arg1, arg2, …, argn);

! format string refers to a string containing

formatting information and data types of the

arguments to be output

! the arguments arg1, arg2, … represent list of

variables/expressions whose values are to be

printed

 The conversion characters are the same

as in scanf

63

 Examples:

printf (“Average of %d and %d is %f”, a, b, avg);

printf (“Hello \nGood \nMorning \n”);

printf (“%3d %3d %5d”, a, b, a*b+2);

printf (“%7.2f %5.1f”, x, y);

 Many more options are available for both

printf and scanf

!Read from the book

!Practice them in the lab

