
File Handling
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What is a file?

• A named collection of data, stored in 
secondary storage (typically).

• Typical operations on files:
– Open

– Read
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– Read

– Write

– Close

• How is a file stored?
– Stored as sequence of bytes, logically 

contiguous (may not be physically contiguous 
on disk).



– The last byte of a text file contains the end-of-
file character (EOF), with ASCII code 1A (hex).

– While reading a text file, the EOF character can 
be checked to know the end.

• Two kinds of files:
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• Two kinds of files:

– Text :: contains ASCII codes only

– Binary :: can contain non-ASCII characters

• Image, audio, video, executable, etc.

• To check the end of file here, the file size value (also 
stored on disk) needs to be checked.



File handling in C

• In C we use FILE * to represent a pointer to a 

file.  

• fopen is used to open a file.  It returns the 
special value NULL to indicate that it is unable to 

open the file.
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FILE *fptr;

char filename[]= "file2.dat";

fptr = fopen (filename,"w");

if (fptr == NULL) {

printf (“ERROR IN FILE CREATION”);  

exit(-1);

}



Modes for opening files

• The second argument of fopen is the 

mode in which we open the file.  There are 
three modes.

"r" opens a file for reading.
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"w" creates a file for writing, and writes over all 
previous contents (deletes the file so be 
careful!).

"a" opens a file for appending – writing on the 
end of the file.



• We can add a “b” character to indicate 
that the file is a binary file.

– “rb”, “wb” or “ab”

fptr = fopen (“xyz.jpg”, “rb”);
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fptr = fopen (“xyz.jpg”, “rb”);



The exit() function

• Sometimes error checking means we want 
an "emergency exit" from a program.  

• In main() we can use return to stop.

• In functions we can use exit() to do this.

• Exit is part of the stdlib.h library.
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• Exit is part of the stdlib.h library.

exit(-1);

in a function is exactly the same as

return -1;

in the main routine



Usage of exit( ) 

FILE *fptr;

char filename[]= "file2.dat";

fptr = fopen (filename,"w");

if (fptr == NULL) {

17 April 2011 Programming and Data Structure 8

printf (“ERROR IN FILE CREATION”);  

/* Do something */

exit(-1);

}

………



Writing to a file using fprintf( )

• fprintf() works just like printf() and 
sprintf() except that its first argument 

is a file pointer.

FILE *fptr;
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FILE *fptr;

fptr = fopen ("file.dat","w");

/* Check it's open */

fprintf (fptr, "Hello World!\n");

fprintf (fptr, “%d %d”, a, b);



Reading Data Using fscanf( )

FILE *fptr;

Fptr = fopen (“input.dat”, “r”);

/* Check it's open */

• We  also read data from a file using fscanf().
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/* Check it's open */

if (fptr == NULL)

{

printf(“Error in opening file \n”);

}

fscanf (fptr, “%d %d”,&x, &y);



Reading lines from a file using fgets( )

We can read a string using fgets().

FILE *fptr;

char line [1000];

/* Open file and check it is open */

while (fgets(line,1000,fptr) != NULL) 

{
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{

printf ("Read line %s\n",line);

}

fgets() takes 3 arguments – a string, maximum

number of characters to read, and a file pointer.
It returns NULL if there is an error (such as EOF).



Closing a file

• We can close a file simply using fclose()

and the file pointer.  

FILE *fptr;

char filename[]= "myfile.dat";
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char filename[]= "myfile.dat";

fptr = fopen (filename,"w");

if (fptr == NULL) {

printf ("Cannot open file to write!\n");

exit(-1);

}

fprintf (fptr,"Hello World of filing!\n");

fclose (fptr);



Three special streams

• Three special file streams are defined in 
the <stdio.h> header

– stdin reads input from the keyboard

– stdout send output to the screen

– stderr prints errors to an error device (usually 
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– stderr prints errors to an error device (usually 
also the screen)

• What might this do?

fprintf (stdout,"Hello World!\n");



An example program

#include <stdio.h>

main()

{

int i;

fprintf(stdout,"Give value of i \n");

fscanf(stdin,"%d",&i);
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fprintf(stdout,"Value of i=%d \n",i);

fprintf(stderr,"No error: But an example to 

show error message.\n");

}

Give value of i 
15
Value of i=15 
No error: But an example to show error message.



Input File & Output File redirection

• One may redirect the standard input and 
standard output to other files (other than 
stdin and stdout).

• Usage: Suppose the executable file is 
a.out:
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a.out:

$ ./a.out <in.dat  >out.dat

scanf() will read data inputs from the file 
“in.dat”, and printf() will output results 
on the file “out.dat”.



A Variation 

$ ./a.out <in.dat  >>out.dat

scanf() will read data inputs from the file 
“in.dat”, and printf() will append results 
at the end of the file “out.dat”.
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at the end of the file “out.dat”.



Reading and Writing a character

• A character reading/writing  is equivalent 
to reading/writing  a byte.

int getchar( );

int putchar(int  c); 
stdin, stdout
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int fgetc(FILE *fp);

int fputc(int c, FILE *fp);

• Example:
char c;

c = getchar();

putchar(c);

file



Example: use of getchar() & putchar()

#include <stdio.h>

main()

{

int c;

printf("Type text and press return to  
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printf("Type text and press return to  

see it again \n");

printf("For exiting press <CTRL D> \n");

while((c = getchar()) != EOF) 

putchar(c);

}



Command Line Arguments
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What are they?

• A program can be executed by directly typing a 
command at the operating system prompt.

$ cc –o test test.c

$ ./a.out in.dat out.dat

$ prog_name param_1 param_2 param_3 ..
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$ prog_name param_1 param_2 param_3 ..

– The individual items specified are separated 
from one another by spaces.

• First item is the program name.

– Variables argc and argv keep track of the items 
specified in the command line.



How to access them?

• Command line arguments may be passed 
by specifying them under main().

int main (int argc, char *argv[]);
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Argument
Count

Array of  strings
as command line

arguments including 
the command itself.



Example: Contd.

$ ./a.out  s.dat  d.dat

argc=3
./a.out
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argc=3
./a.out

s.dat

d.dat
argv

argv[0] = “./a.out”  argv[1] = “s.dat”      argv[2] = “d.dat”



Example: reading command line arguments

#include <stdio.h>

#include <string.h>

int main(int argc,char *argv[])

{

FILE *ifp, *ofp;

int i, c;

char src_file[100],dst_file[100];
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char src_file[100],dst_file[100];

if(argc!=3) {

printf ("Usage: ./a.out <src_file> <dst_file> \n");

exit(0);

}

else {

strcpy (src_file, argv[1]); 

strcpy (dst_file, argv[2]);

}



Example: contd.

if ((ifp = fopen(src_file,"r")) == NULL)  {

printf ("File does not exist.\n");

exit(0);

}

if ((ofp = fopen(dst_file,"w")) == NULL)  {

printf ("File not created.\n");

exit(0);
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exit(0);

}

while ((c = fgetc(ifp)) != EOF) {

fputc (c,ofp);

}

fclose(ifp);

fclose(ofp);

}



Example: with command-line arguments

• Write a program which will take the 
number of data items, followed by the 
actual data items on the command line, 
and print the average.
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$ ./a.out 6 10 17 35 12 28 33

No. of data items
argv[1] = “10”

argv[2] = “17”, and so on



Getting numbers from strings

• Once we have got a string with a number 
in it (either from a file or from the user 
typing) we can use atoi or atof to 

convert it to a number.

• The functions are part of stdlib.h
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• The functions are part of stdlib.h

char numberstring[]= "3.14";

int i;

double pi;

pi = atof (numberstring);

i = atoi ("12");

Both of these functions return 0 if they have a problem.



• Alternatively, we can use sscanf() .

• For example, if argv[1]=“10” and 
argv[2]=“17”, then we can read their 

values into integer variables as:
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sscanf (argv[1], “%d”, &n1);

sscanf (argv[2], “%d”, &n2);



Reading one line at a time

• It is quite common to want to read every 
line in a program.  The best way to do this 
is a while loop using fgets() .

FILE *fptr;

char tline[100];  
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char tline[100];  

fptr = fopen ("sillyfile.txt", "r");

/* check it's open */

while (fgets (tline, 100, fptr) != NULL) {

printf ("%s", tline); // Print it

}

fclose (fptr);


