
File Handling

17 April 2011 Programming and Data Structure 1

What is a file?

• A named collection of data, stored in
secondary storage (typically).

• Typical operations on files:
– Open

– Read

17 April 2011 Programming and Data Structure 2

– Read

– Write

– Close

• How is a file stored?
– Stored as sequence of bytes, logically

contiguous (may not be physically contiguous
on disk).

– The last byte of a text file contains the end-of-
file character (EOF), with ASCII code 1A (hex).

– While reading a text file, the EOF character can
be checked to know the end.

• Two kinds of files:

17 April 2011 Programming and Data Structure 3

• Two kinds of files:

– Text :: contains ASCII codes only

– Binary :: can contain non-ASCII characters

• Image, audio, video, executable, etc.

• To check the end of file here, the file size value (also
stored on disk) needs to be checked.

File handling in C

• In C we use FILE * to represent a pointer to a

file.

• fopen is used to open a file. It returns the
special value NULL to indicate that it is unable to

open the file.

17 April 2011 Programming and Data Structure 4

FILE *fptr;

char filename[]= "file2.dat";

fptr = fopen (filename,"w");

if (fptr == NULL) {

printf (“ERROR IN FILE CREATION”);

exit(-1);

}

Modes for opening files

• The second argument of fopen is the

mode in which we open the file. There are
three modes.

"r" opens a file for reading.

17 April 2011 Programming and Data Structure 5

"w" creates a file for writing, and writes over all
previous contents (deletes the file so be
careful!).

"a" opens a file for appending – writing on the
end of the file.

• We can add a “b” character to indicate
that the file is a binary file.

– “rb”, “wb” or “ab”

fptr = fopen (“xyz.jpg”, “rb”);

17 April 2011 Programming and Data Structure 6

fptr = fopen (“xyz.jpg”, “rb”);

The exit() function

• Sometimes error checking means we want
an "emergency exit" from a program.

• In main() we can use return to stop.

• In functions we can use exit() to do this.

• Exit is part of the stdlib.h library.

17 April 2011 Programming and Data Structure 7

• Exit is part of the stdlib.h library.

exit(-1);

in a function is exactly the same as

return -1;

in the main routine

Usage of exit()

FILE *fptr;

char filename[]= "file2.dat";

fptr = fopen (filename,"w");

if (fptr == NULL) {

17 April 2011 Programming and Data Structure 8

printf (“ERROR IN FILE CREATION”);

/* Do something */

exit(-1);

}

………

Writing to a file using fprintf()

• fprintf() works just like printf() and
sprintf() except that its first argument

is a file pointer.

FILE *fptr;

17 April 2011 Programming and Data Structure 9

FILE *fptr;

fptr = fopen ("file.dat","w");

/* Check it's open */

fprintf (fptr, "Hello World!\n");

fprintf (fptr, “%d %d”, a, b);

Reading Data Using fscanf()

FILE *fptr;

Fptr = fopen (“input.dat”, “r”);

/* Check it's open */

• We also read data from a file using fscanf().

17 April 2011 Programming and Data Structure 10

/* Check it's open */

if (fptr == NULL)

{

printf(“Error in opening file \n”);

}

fscanf (fptr, “%d %d”,&x, &y);

Reading lines from a file using fgets()

We can read a string using fgets().

FILE *fptr;

char line [1000];

/* Open file and check it is open */

while (fgets(line,1000,fptr) != NULL)

{

17 April 2011 Programming and Data Structure 11

{

printf ("Read line %s\n",line);

}

fgets() takes 3 arguments – a string, maximum

number of characters to read, and a file pointer.
It returns NULL if there is an error (such as EOF).

Closing a file

• We can close a file simply using fclose()

and the file pointer.

FILE *fptr;

char filename[]= "myfile.dat";

17 April 2011 Programming and Data Structure 12

char filename[]= "myfile.dat";

fptr = fopen (filename,"w");

if (fptr == NULL) {

printf ("Cannot open file to write!\n");

exit(-1);

}

fprintf (fptr,"Hello World of filing!\n");

fclose (fptr);

Three special streams

• Three special file streams are defined in
the <stdio.h> header

– stdin reads input from the keyboard

– stdout send output to the screen

– stderr prints errors to an error device (usually

17 April 2011 Programming and Data Structure 13

– stderr prints errors to an error device (usually
also the screen)

• What might this do?

fprintf (stdout,"Hello World!\n");

An example program

#include <stdio.h>

main()

{

int i;

fprintf(stdout,"Give value of i \n");

fscanf(stdin,"%d",&i);

17 April 2011 Programming and Data Structure 14

fprintf(stdout,"Value of i=%d \n",i);

fprintf(stderr,"No error: But an example to

show error message.\n");

}

Give value of i
15
Value of i=15
No error: But an example to show error message.

Input File & Output File redirection

• One may redirect the standard input and
standard output to other files (other than
stdin and stdout).

• Usage: Suppose the executable file is
a.out:

17 April 2011 Programming and Data Structure 15

a.out:

$./a.out <in.dat >out.dat

scanf() will read data inputs from the file
“in.dat”, and printf() will output results
on the file “out.dat”.

A Variation

$./a.out <in.dat >>out.dat

scanf() will read data inputs from the file
“in.dat”, and printf() will append results
at the end of the file “out.dat”.

17 April 2011 Programming and Data Structure 16

at the end of the file “out.dat”.

Reading and Writing a character

• A character reading/writing is equivalent
to reading/writing a byte.

int getchar();

int putchar(int c);
stdin, stdout

17 April 2011 Programming and Data Structure 17

int fgetc(FILE *fp);

int fputc(int c, FILE *fp);

• Example:
char c;

c = getchar();

putchar(c);

file

Example: use of getchar() & putchar()

#include <stdio.h>

main()

{

int c;

printf("Type text and press return to

17 April 2011 Programming and Data Structure 18

printf("Type text and press return to

see it again \n");

printf("For exiting press <CTRL D> \n");

while((c = getchar()) != EOF)

putchar(c);

}

Command Line Arguments

17 April 2011 Programming and Data Structure 19

What are they?

• A program can be executed by directly typing a
command at the operating system prompt.

$ cc –o test test.c

$./a.out in.dat out.dat

$ prog_name param_1 param_2 param_3 ..

17 April 2011 Programming and Data Structure 20

$ prog_name param_1 param_2 param_3 ..

– The individual items specified are separated
from one another by spaces.

• First item is the program name.

– Variables argc and argv keep track of the items
specified in the command line.

How to access them?

• Command line arguments may be passed
by specifying them under main().

int main (int argc, char *argv[]);

17 April 2011 Programming and Data Structure 21

Argument
Count

Array of strings
as command line

arguments including
the command itself.

Example: Contd.

$./a.out s.dat d.dat

argc=3
./a.out

17 April 2011 Programming and Data Structure 22

argc=3
./a.out

s.dat

d.dat
argv

argv[0] = “./a.out” argv[1] = “s.dat” argv[2] = “d.dat”

Example: reading command line arguments

#include <stdio.h>

#include <string.h>

int main(int argc,char *argv[])

{

FILE *ifp, *ofp;

int i, c;

char src_file[100],dst_file[100];

17 April 2011 Programming and Data Structure 23

char src_file[100],dst_file[100];

if(argc!=3) {

printf ("Usage: ./a.out <src_file> <dst_file> \n");

exit(0);

}

else {

strcpy (src_file, argv[1]);

strcpy (dst_file, argv[2]);

}

Example: contd.

if ((ifp = fopen(src_file,"r")) == NULL) {

printf ("File does not exist.\n");

exit(0);

}

if ((ofp = fopen(dst_file,"w")) == NULL) {

printf ("File not created.\n");

exit(0);

17 April 2011 Programming and Data Structure 24

exit(0);

}

while ((c = fgetc(ifp)) != EOF) {

fputc (c,ofp);

}

fclose(ifp);

fclose(ofp);

}

Example: with command-line arguments

• Write a program which will take the
number of data items, followed by the
actual data items on the command line,
and print the average.

17 April 2011 Programming and Data Structure 25

$./a.out 6 10 17 35 12 28 33

No. of data items
argv[1] = “10”

argv[2] = “17”, and so on

Getting numbers from strings

• Once we have got a string with a number
in it (either from a file or from the user
typing) we can use atoi or atof to

convert it to a number.

• The functions are part of stdlib.h

17 April 2011 Programming and Data Structure 26

• The functions are part of stdlib.h

char numberstring[]= "3.14";

int i;

double pi;

pi = atof (numberstring);

i = atoi ("12");

Both of these functions return 0 if they have a problem.

• Alternatively, we can use sscanf() .

• For example, if argv[1]=“10” and
argv[2]=“17”, then we can read their

values into integer variables as:

17 April 2011 Programming and Data Structure 27

sscanf (argv[1], “%d”, &n1);

sscanf (argv[2], “%d”, &n2);

Reading one line at a time

• It is quite common to want to read every
line in a program. The best way to do this
is a while loop using fgets() .

FILE *fptr;

char tline[100];

17 April 2011 Programming and Data Structure 28

char tline[100];

fptr = fopen ("sillyfile.txt", "r");

/* check it's open */

while (fgets (tline, 100, fptr) != NULL) {

printf ("%s", tline); // Print it

}

fclose (fptr);

