
SortingSortingSorting

1

Sorting

Sorting Data Items

� Consider a set of data items

� Each item may have more than one field

� Example: a student record with name, roll no, CGPA,…

Sort the set in ascending/descending order of � Sort the set in ascending/descending order of

some key value (some value of the data)

� Sort a set of integers (the key value is the value of

the integer)

� Sort a set of student records according to roll no

(the key value is roll no, though a student record

has other values too)

Sorting Data Items

Consider a set of data items

Each item may have more than one field

Example: a student record with name, roll no, CGPA,…

Sort the set in ascending/descending order of

2

Sort the set in ascending/descending order of

value (some value of the data)

Sort a set of integers (the key value is the value of

Sort a set of student records according to roll no

(the key value is roll no, though a student record

Different Sorting Techniques

� Selection sort (already seen)

� Bubble sort (read from text)

� Insertion sort

� Mergesort� Mergesort

� Quicksort

� Heapsort

� Bucket sort

� ….

Question: which one should you use?

(will look at this later)

We will discuss these

Different Sorting Techniques

Selection sort (already seen)

Bubble sort (read from text)

3

Question: which one should you use?

(will look at this later)

We will discuss these

Assumptions

� For all sorting techniques, we will take the
input as an array of integers

� The sorting technique will reposition the � The sorting technique will reposition the
elements in the array such that they are
sorted in ascending order

� Same technique can be used to sort any
other data type or sort in descending order

For all sorting techniques, we will take the
input as an array of integers

The sorting technique will reposition the

4

The sorting technique will reposition the
elements in the array such that they are

order

Same technique can be used to sort any
other data type or sort in descending order

Insertion SortInsertion SortInsertion Sort

5

Insertion Sort

Insertion Sort
� Suppose we know how to insert a new element x in its proper

place in an already sorted array A of size k, to get a new
sorted array of size k+1

� Use this to sort the given array A of size n as follows:

� Insert A[1] in the sorted array A[0]. So now A[0],A[1] are
sortedsorted

� Insert A[2] in the sorted array A[0],A[1]. So now
A[0],A[1],A[2] are sorted

� Insert A[3] in the sorted array A[0],A[1],A[2]. So now
A[0],A[1],A[2],A[3] are sorted

� …..

� Insert A[i] in the sorted array A[0],A[1],…,A[i
A[0],A[1],…A[i] are sorted

� Continue until i = n-1 (outer loop)

Suppose we know how to insert a new element x in its proper
place in an already sorted array A of size k, to get a new

Use this to sort the given array A of size n as follows:

Insert A[1] in the sorted array A[0]. So now A[0],A[1] are

6

Insert A[2] in the sorted array A[0],A[1]. So now

Insert A[3] in the sorted array A[0],A[1],A[2]. So now
A[0],A[1],A[2],A[3] are sorted

Insert A[i] in the sorted array A[0],A[1],…,A[i-1]. So now

(outer loop)

How to do the first step
� Compare x with A[k-1] (the last element)

� If x ≥ A[k-1], we can make A[k] = x (as x is the max
of all the elements)

� If x < A[k-1], put A[k] = A[k
the k-th position, put x therethe k-th position, put x there

� Now repeat by comparing x with A[k
its proper place in the sorted subarray
A[0],A[1],…A[k-1] of k-2 elements)

� The value x bubbles to the left until it finds an
element A[i] such that x ≥ A[i]

� No need to compare any more as all elements A[0],
A[1], A[i] are less than x

How to do the first step
1] (the last element)

1], we can make A[k] = x (as x is the max

1], put A[k] = A[k-1] to create a hole in
th position, put x there

7

th position, put x there

Now repeat by comparing x with A[k-2] (inserting x in
its proper place in the sorted subarray

2 elements)

The value x bubbles to the left until it finds an
element A[i] such that x ≥ A[i]

No need to compare any more as all elements A[0],

Example of first step

5 7 11 13 20 22A

Example of first step

Insert x = 15

8

Example of first step

5 7 11 13 20 22

5 7 11 13 20 15

A

Compare with 22. x < 22, so move 22 right

Example of first step

15 22

Insert x = 15

Compare with 22. x < 22, so move 22 right

9

Example of first step

5 7 11 13 20 22

5 7 11 13 20 15

A

Compare with 22. x < 22, so move 22 right

5 7 11 13 15 20

Compare with 20. x < 20, so move 20 right

Example of first step

15 22

Insert x = 15

Compare with 22. x < 22, so move 22 right

10

20 22

Compare with 20. x < 20, so move 20 right

Example of first step

5 7 11 13 20 22

5 7 11 13 20 15

A

Compare with 22. x < 22, so move 22 right

5 7 11 13 15 20

5 7 11 13 15 20

Compare with 20. x < 20, so move 20 right

Compare with 13. x > 13, so stop

A

Example of first step

15 22

Insert x = 15

Compare with 22. x < 22, so move 22 right

11

20 22

20 22

Compare with 20. x < 20, so move 20 right

Compare with 13. x > 13, so stop

Sort using the insertion

7 5 13 11 22 20

5 7 13 11 22 20

A

Insert 5 in 7

Insert 13 in 5, 7

5 7 13 11 22 20

5 7 11 13 22 20

Insert 13 in 5, 7

Insert 11 in 5, 7, 13

Insert 22 in 5, 7, 11, 13

5 7 11 13 22 20

Sort using the insertion

Insert 20 in 5, 7, 11, 13, 22

12

5 7 11 13 20 22

Insertion Sort Code
void InsertionSort (int A[], int size)

{

int i, j, item;

for (i=1; i<size; i++)

{ /* Insert the element in A[i] */

item = A[i] ;

for (j = i-1; j >= 0; j--)for (j = i-1; j >= 0; j--)

if (item > A[j])

{ /* push elements down*/

A[j+1] = A[j];

A[j] = item ; /* can do this once finally also */

}

else break; /*inserted, exit loop */

}

}

void InsertionSort (int A[], int size)

/* Insert the element in A[i] */

13

/* push elements down*/

/* can do this once finally also */

/*inserted, exit loop */

void InsertionSort (int A[], int size) {

int i,j, item;

for (i=1; i<size; i++) {

printf("i = %d:: ",i);

for (j=0;j<size;j++) printf("%d, ",A[j]);

printf("\n"); item = A[i] ;

for (j=i-1; j>=0; j--)

if (item > A[j])

{ A[j+1] = A[j]; A[j] = item ; }

else break;else break;

} }
int main() {

int X[100], i, size;

scanf("%d",&size);

for (i=0;i<size;i++) scanf("%d",&X[i]);

InsertionSort(X,size);

printf("Result = ");

for (i=0;i<size;i++) printf("%d, ",X[i]);

printf("\n"); return 0;

}

Look at the sorting!

8
2
9
4
7
6
2
1

14

1
5
i = 1:: 2, 9, 4, 7, 6, 2, 1, 5,
i = 2:: 9, 2, 4, 7, 6, 2, 1, 5,
i = 3:: 9, 4, 2, 7, 6, 2, 1, 5,
i = 4:: 9, 7, 4, 2, 6, 2, 1, 5,
i = 5:: 9, 7, 6, 4, 2, 2, 1, 5,
i = 6:: 9, 7, 6, 4, 2, 2, 1, 5,
i = 7:: 9, 7, 6, 4, 2, 2, 1, 5,
Result = 9, 7, 6, 5, 4, 2, 2, 1,

for (i=0;i<size;i++) scanf("%d",&X[i]);

for (i=0;i<size;i++) printf("%d, ",X[i]);

MergesortMergesortMergesort

15

Mergesort

Basic Idea

� Divide the array into two halves

� Sort the two sub-arrays

� Merge the two sorted sub
sorted arraysorted array

� Step 2 (sorting the sub
recursively (divide in two, sort, merge) until the
array has a single element (base condition of
recursion)

Divide the array into two halves

arrays

Merge the two sorted sub-arrays into a single

16

Step 2 (sorting the sub-arrays) is done
recursively (divide in two, sort, merge) until the
array has a single element (base condition of

Merging Two Sorted Arrays

3 4 7 8 9

2 5 7

Problem: Two sorted arrays A and B are given. We are required to

produce a final sorted array C which contains all elements of A and B.

2 3

3 4 7 8 9

2 5 7

Merging Two Sorted Arrays

2

3 4 7 8 9

2 5 7

: Two sorted arrays A and B are given. We are required to

produce a final sorted array C which contains all elements of A and B.

17

2

2 3 4

3 4 7 8 9

2 5 7

2 3 4 5

3 4 7 8 9

2 5 7

2 3 4 5 7 7

3 4 7 8 9

2 5 7

2 3 4 5 7

3 4 7 8 9

2 5 7

18

2 3 4 5 7 7 8

3 4 7 8 9

2 5 7

Merge Code

3 4 7 8 9

2 5 7

void

merge (int *A, int *B, int *C, int m,int n)

{

int i=0,j=0,k=0;

while (i<m && j<n)

{

2 3 4 5 7 7 8 9

2 5 7 {

if (A[i] < B[j]) C[k++] = A[i++];

else C[k++] = B[j++];

}

while (i<m) C[k++] = A[i++];

while (j<n) C[k++] = B[j++];

}

merge (int *A, int *B, int *C, int m,int n)

int i=0,j=0,k=0;

while (i<m && j<n)

19

if (A[i] < B[j]) C[k++] = A[i++];

else C[k++] = B[j++];

while (i<m) C[k++] = A[i++];

while (j<n) C[k++] = B[j++];

Merge Sort: Sorting an array recursively

void mergesort (int *A, int n)

{

int i, j, *B;

if (n <= 1) return;

B = (int *)malloc(n*sizeof(int));

i = n/2;

mergesort(A, i);

mergesort(A+i, n-i);

merge(A, A+i, B, i, n-i);

for (j=0; j<n; j++) A[j] = B[j];

free(B);

}

Merge Sort: Sorting an array recursively

B = (int *)malloc(n*sizeof(int));

20

for (j=0; j<n; j++) A[j] = B[j];

QuicksortQuicksortQuicksort

21

Quicksort

Basic Idea

� Choose any element x in the array as pivot

� Place x in A such that

�All elements to the left of x are �All elements to the left of x are

�All elements to the right of x are > x

�So x is now in its proper position in the final

sorted array

� Recursively sort the left and right sides of x

Choose any element x in the array as pivot

Place x in A such that

All elements to the left of x are ≤ x

22

All elements to the left of x are ≤ x

All elements to the right of x are > x

So x is now in its proper position in the final

Recursively sort the left and right sides of x

Easy to do with additional

temporary arrays

� Let S = [a1, a2, a3, ….., an];

� if n == 1 return S;

� chose a pivot element (say a1) from S;

� L = an array containing all elements

� M = an array containing all elements

� Sort L and M separately using the same method

Easy to do with additional

Let S = [a1, a2, a3, ….., an];

chose a pivot element (say a1) from S;

23

L = an array containing all elements ≤ pivot

M = an array containing all elements > pivot

Sort L and M separately using the same method

Partition and Sort

Instead of using two additional arrays L and M, shift the elements

of S in such a way that the pivot element moves to its actual
position, those < than pivot go to its left and those
Then recursively call the sorting on the two parts of the same
array.

Instead of using two additional arrays L and M, shift the elements

of S in such a way that the pivot element moves to its actual
position, those < than pivot go to its left and those ≥ to its right.
Then recursively call the sorting on the two parts of the same

24

Partition and Sort

Instead of using two additional arrays L and M, shift the elements

of S in such a way that the pivot element moves to its actual
position, those < than pivot go to its left and those
Then recursively call the sorting on the two parts of the same
array.

void quicksort(int *A, int p, int r)

{{

int index;

if(p >= r) return;

index = partition(A, p, r);

quicksort(A, p, index-1);

quicksort(A, index+1, r);

}

Instead of using two additional arrays L and M, shift the elements

of S in such a way that the pivot element moves to its actual
position, those < than pivot go to its left and those ≥ to its right.
Then recursively call the sorting on the two parts of the same

quicksort(int *A, int p, int r)

25

The subarray
between A[p] and
A[r] is to be sorted

index = position
where pivot is
placed

Partition: Working example

5 3 2 6 8 1 3 7

5 3 2 6 8 1 3 7

5 3 2 3 8 1 6 7

5 3 2 3 8 1 6 7

Partitioning method:

1. Choose first element as

2. Move

an element > pivot

3. Move 5 3 2 3 8 1 6 7

5 3 2 3 1 8 6 7

5 3 2 3 1 8 6 7

reach an element

4. If i<j then exchange A[i] and A[j]; j

5. Go back to 2 as long as i < j

6. Exchange the pivot element with

element in index j

7. Return j;

Partitioned here

1 3 2 3 5 8 6 7

Partition: Working example

Partitioning method:

1. Choose first element as pivot (green)

2. Move left index i, (red) forward to reach

an element > pivot

3. Move right index j, (blue) backward to

26

reach an element ≤ pivot

4. If i<j then exchange A[i] and A[j]; j--;

5. Go back to 2 as long as i < j

6. Exchange the pivot element with

element in index j

7. Return j;

The

partition

function

int partition(int *A, int p, int r)

{

int pivot, i, j, k, temp;

pivot = A[p];

i = p; j = r;

while(i < j){

while(A[i] <= pivot && i<=r) i++;

while(A[j] > pivot) j

if (i<j){function if (i<j){

temp = A[i]; A[i] = A[j]; A[j] = temp;

j--;

}

}

temp = A[j]; A[j] = A[p]; A[p] = temp;

return j;

}

int partition(int *A, int p, int r)

int pivot, i, j, k, temp;

pivot = A[p];

i = p; j = r;

while(A[i] <= pivot && i<=r) i++;

while(A[j] > pivot) j--;

27

temp = A[i]; A[i] = A[j]; A[j] = temp;

temp = A[j]; A[j] = A[p]; A[p] = temp;

Partition in action
int partition(int *A, int p, int r)
{
int pivot, i, j, k, temp;
pivot = A[p];
i = p; j = r;
while(i<j){

while(A[i] <= pivot && i<=r) i++;
while(A[j] > pivot) j--;
if (i<j){

temp = A[i]; A[i] = A[j];
A[j] = temp;
printf("In partition:

int main()

{ int A[10], n, i, j;

scanf("%d", &n);

for (i=0; i<n; i++) scanf("%d", &A[i]);

for (i=0; i<n; i++) printf("%d, ", A[i]);

printf("

printf("Partitioned at %d

for (i=0; i<n; i++) printf("%d, ", A[i]);

printf("

return 0;

}
printf("In partition:

i = %d, j = %d\n", i,j);
for (k=p; k<=r; k++)

printf("%d, ", A[k]);
printf("\n");
j--;

}
}

temp = A[j]; A[j] = A[p];
A[p] = temp;
return j;
}

}

int main()

{ int A[10], n, i, j;

scanf("%d", &n);

for (i=0; i<n; i++) scanf("%d", &A[i]);

for (i=0; i<n; i++) printf("%d, ", A[i]);

printf("\n");

printf("Partitioned at %d\n", partition(A,0,n-1));

for (i=0; i<n; i++) printf("%d, ", A[i]);

printf("\n");

return 0;

28

8

5 3 2 6 4 1 3 7
5, 3, 2, 6, 4, 1, 3, 7,

In partition: i = 3, j = 6

5, 3, 2, 3, 4, 1, 6, 7,

Partitioned at 5
1, 3, 2, 3, 4, 5, 6, 7,

quicksort and partition functions

int partition(int *A, int p, int r)

{

int pivot, i,j,temp;

pivot = A[p];

i = p; j = r;

while(i < j){

while(A[i] <= pivot && i<=r) i++;while(A[i] <= pivot && i<=r) i++;

while(A[j] > pivot) j--;

if (i < j){

temp = A[i]; A[i] = A[j];

A[j] = temp;

j--;

}

}

temp = A[j]; A[j] = A[p]; A[p] = temp;

return j;

}

quicksort and partition functions

void quicksort(int *A, int p, int r)

{

int index;

if(p >= r) return;

29

index = partition(A,p,r);

quicksort(A,p,index-1);

quicksort(A,index+1,r);

}

