
222-d Arrays

1

2-d Arrays

Two Dimensional Arrays

� We have seen that an array variable can store
a list of values

� Many applications require us to store a
of values

75 82

68 75

88 74

50 65

Student 1

Student 2

Student 3

Student 4

Subject 1 Subject 2 Subject 3

Two Dimensional Arrays

We have seen that an array variable can store

Many applications require us to store a table

2

90 65 76

80 70 72

85 76 80

68 40 70

Subject 3 Subject 4 Subject 5

Contd.

� The table contains a total of 20 values, five
in each line

�The table can be regarded as a �The table can be regarded as a

consisting of four rows

� C allows us to define such tables of items
by using two-dimensional

The table contains a total of 20 values, five

The table can be regarded as a matrix

3

The table can be regarded as a matrix

four rows and five columns

C allows us to define such tables of items
dimensional arrays

Declaring 2-D Arrays

� General form:

type array_name [row_size][column_size];

� Examples:� Examples:

int marks[4][5];

float sales[12][25];

double matrix[100][100];

D Arrays

type array_name [row_size][column_size];

4

double matrix[100][100];

Initializing 2-d arrays

� int a[2][3] = {1,2,3,4,5,6};

� int a[2][3] = {{1,2,3}, {4,5,6}};

� int a[][3] = {{1,2,3}, {4,5,6}};

All of the above will give the 2x3 array

1 2 3

4 5 6

d arrays

int a[2][3] = {1,2,3,4,5,6};

int a[2][3] = {{1,2,3}, {4,5,6}};

int a[][3] = {{1,2,3}, {4,5,6}};

5

All of the above will give the 2x3 array

Accessing Elements of a 2

Array
� Similar to that for 1-d array, but use two indices

� First indicates row, second indicates column

� Both the indices should be expressions which

evaluate to integer values (within range of the evaluate to integer values (within range of the

sizes mentioned in the array declaration)

� Examples:

x[m][n] = 0;

c[i][k] += a[i][j] * b[j][k];

a = sqrt (a[j*3][k]);

Accessing Elements of a 2-d

d array, but use two indices

First indicates row, second indicates column

Both the indices should be expressions which

evaluate to integer values (within range of the

6

evaluate to integer values (within range of the

sizes mentioned in the array declaration)

Example

int a[3][5];

A two-dimensional array of 15 elements

Can be looked upon as a table of 3 rows and 5 columns

a[0][0] a[0][1]row0

a[1][0] a[1][1]row1

a[2][0] a[2][1]row2

col0 col1

dimensional array of 15 elements

Can be looked upon as a table of 3 rows and 5 columns

7

a[0][2] a[0][3] a[0][4]

a[1][2] a[1][3] a[1][4]

a[2][2] a[2][3] a[2][4]

col2 col3 col4

How is a 2-d array is stored in

memory?
� Starting from a given memory location, the elements

are stored row-wise in consecutive memory locations

(row-major order)

� x: starting address of the array in memoryx: starting address of the array in memory

� c: number of columns

� k: number of bytes allocated per array element

� a[i][j] � is allocated memory location at

address x + (i * c + j) * k

a[0]0] a[0][1] a[0]2] a[0][3] a[1][0] a[1][1] a[1][2] a[1][3] a[2][0] a[2][1] a[2][2] a[2][3]

Row 0 Row 1

d array is stored in

Starting from a given memory location, the elements

in consecutive memory locations

x: starting address of the array in memory

8

x: starting address of the array in memory

k: number of bytes allocated per array element

is allocated memory location at

x + (i * c + j) * k

a[0]0] a[0][1] a[0]2] a[0][3] a[1][0] a[1][1] a[1][2] a[1][3] a[2][0] a[2][1] a[2][2] a[2][3]

Row 1 Row 2

Array Addresses

int main()

{

int a[3][5];

int i,j;

for (i=0; i<3;i++)for (i=0; i<3;i++)

{

for (j=0; j<5; j++) printf("%u\n", &a[i][j]);

printf("\n");

}

return 0;

}

3221224480
3221224484
3221224488
3221224492
3221224496

3221224500
3221224504

Output

9

n", &a[i][j]);

3221224504
3221224508
3221224512
3221224516

3221224520
3221224524
3221224528
3221224532
3221224536

More on Array Addresses
int main()

{

int a[3][5];

printf("a = %u\n", a);

printf("&a[0][0] = %u\n", &a[0][0]);

printf("&a[2][3] = %u\n", &a[2][3]);

printf("a[2]+3 = %u\n", a[2]+3);printf("a[2]+3 = %u\n", a[2]+3);

printf("*(a+2)+3 = %u\n", *(a+2)+3);

printf("*(a+2) = %u\n", *(a+2));

printf("a[2] = %u\n", a[2]);

printf("&a[2][0] = %u\n", &a[2][0]);

printf("(a+2) = %u\n", (a+2));

printf("&a[2] = %u\n", &a[2]);

return 0;

}

More on Array Addresses

n", &a[0][0]);

n", &a[2][3]); a = 3221224480
&a[0][0] = 3221224480

Output

10

n", *(a+2)+3);

n", &a[2][0]);

&a[0][0] = 3221224480
&a[2][3] = 3221224532
a[2]+3 = 3221224532
*(a+2)+3 = 3221224532
*(a+2) = 3221224520
a[2] = 3221224520
&a[2][0] = 3221224520
(a+2) = 3221224520
&a[2] = 3221224520

How to read the elements of a

2-d array?

� By reading them one element at a time

for (i=0; i<nrow; i++)

for (j=0; j<ncol; j++)for (j=0; j<ncol; j++)

scanf (“%f”, &a[i][j]);

� The ampersand (&) is necessary

� The elements can be entered all in one
line or in different lines

How to read the elements of a

By reading them one element at a time

for (i=0; i<nrow; i++)

for (j=0; j<ncol; j++)

11

for (j=0; j<ncol; j++)

scanf (“%f”, &a[i][j]);

The ampersand (&) is necessary

The elements can be entered all in one
line or in different lines

How to print the elements of a

2-d array?

� By printing them one element at a time
for (i=0; i<nrow; i++)

for (j=0; j<ncol; j++)

printf (“\n %f”, a[i][j]);

�The elements are printed one per line

for (i=0; i<nrow; i++)

for (j=0; j<ncol; j++)

printf (“%f”, a[i][j]);

�The elements are all printed on the same line

How to print the elements of a

By printing them one element at a time
for (i=0; i<nrow; i++)

for (j=0; j<ncol; j++)

12

n %f”, a[i][j]);

The elements are printed one per line

for (j=0; j<ncol; j++)

printf (“%f”, a[i][j]);

The elements are all printed on the same line

Contd.

for (i=0; i<nrow; i++)

{

printf (“\n”);printf (“\n”);

for (j=0; j<ncol; j++)

printf (“%f ”, a[i][j]);

}

�The elements are printed nicely in matrix form

for (i=0; i<nrow; i++)

13

for (j=0; j<ncol; j++)

printf (“%f ”, a[i][j]);

The elements are printed nicely in matrix form

Example: Matrix Addition
int main()

{

int a[100][100], b[100][100],

c[100][100], p, q, m, n;

scanf (“%d %d”, &m, &n); scanf (“%d %d”, &m, &n);

for (p=0; p<m; p++)

for (q=0; q<n; q++)

scanf (“%d”, &a[p][q]);

for (p=0; p<m; p++)

for (q=0; q<n; q++)

scanf (“%d”, &b[p][q]);

Example: Matrix Addition

for (p=0; p<m; p++)

for (q=0; q<n; q++)

c[p][q] = a[p][q] + b[p][q];

for (p=0; p<m; p++)

14

for (p=0; p<m; p++)

{

printf (“\n”);

for (q=0; q<n; q++)

printf (“%d ”, c[p][q]);

}

return 0;

}

Passing 2-d Arrays as Parameters

� Similar to that for 1-D arrays

� The array contents are not copied into the function

� Rather, the address of the first element is passed

� For calculating the address of an element in a 2

array, we need:

� The starting address of the array in memory

� Number of bytes per element

� Number of columns in the array

� The above three pieces of information must be known

to the function

d Arrays as Parameters

D arrays

The array contents are not copied into the function

Rather, the address of the first element is passed

15

For calculating the address of an element in a 2-d

The starting address of the array in memory

Number of bytes per element

Number of columns in the array

The above three pieces of information must be known

Example Usage

int main()

{

int a[15][25], b[15]25];

::

:

add (a, b, 15, 25);

:

}

void add (int x[][25], int

y[][25], int rows, int cols)

{

:

}

16

We can also write

int x[15][25], y[15][25];

But at least 2nd dimension

must be given

Dynamic Allocation of 2
� Recall that address of [i][j]

by first finding the address of first element of i
th row, then adding j to it

� Now think of a 2-d array of dimension [M][N]
as M 1-d arrays, each with N elementsas M 1-d arrays, each with N elements
that the starting address of the M arrays are
contiguous (so the starting address of k
can be found by adding 1 to the starting
address of (k-1)-th row)

� This is done by allocating
pointers, the pointer p[k] to store the starting
address of the k-th row

Dynamic Allocation of 2-d Arrays
Recall that address of [i][j]-th element is found
by first finding the address of first element of i-
th row, then adding j to it

d array of dimension [M][N]
d arrays, each with N elements, such

17

d arrays, each with N elements, such
the starting address of the M arrays are

(so the starting address of k-th row
can be found by adding 1 to the starting

th row)

This is done by allocating an array p of M
, the pointer p[k] to store the starting

th row

Contd.

� Now, allocate the M arrays, each of N
elements, with p[k] holding the pointer for
the k-th row array

Now p can be subscripted and used as a � Now p can be subscripted and used as a
2-d array

� Address of p[i][j] = *(p+i) + j (note that
*(p+i) is a pointer itself, and p is a pointer
to a pointer)

Now, allocate the M arrays, each of N
elements, with p[k] holding the pointer for

Now p can be subscripted and used as a

18

Now p can be subscripted and used as a

Address of p[i][j] = *(p+i) + j (note that
*(p+i) is a pointer itself, and p is a pointer

Dynamic Allocation of 2
int **allocate (int h, int w)

{

int **p;

int i, j;

p = (int **) malloc(h*sizeof (int *));

Allocate array

of pointers

p = (int **) malloc(h*sizeof (int *));

for (i=0;i<h;i++)

p[i] = (int *) malloc(w * sizeof (int));

return(p);

}
Allocate array of

integers for each

row

Dynamic Allocation of 2-d Arrays

p = (int **) malloc(h*sizeof (int *));

void read_data (int **p, int h, int w)

{

int i, j;

for (i=0;i<h;i++)

for (j=0;j<w;j++)

19

p = (int **) malloc(h*sizeof (int *));

p[i] = (int *) malloc(w * sizeof (int));

for (j=0;j<w;j++)

scanf ("%d", &p[i][j]);

}

Elements accessed

like 2-D array elements.

void print_data (int **p, int h, int w)

{

int i, j;

for (i=0;i<h;i++)

{

for (j=0;j<w;j++)

printf ("%5d ", p[i][j]);

Contd.

printf ("%5d ", p[i][j]);

printf ("\n");

}

}

int main()

{

int **p;

int M, N;

printf ("Give M and N \n");

scanf ("%d%d", &M, &N);

p = allocate (M, N);

20

p = allocate (M, N);

read_data (p, M, N);

printf ("\nThe array read as \n");

print_data (p, M, N);

return 0;

}

void print_data (int **p, int h, int w)

{

int i, j;

for (i=0;i<h;i++)

{

for (j=0;j<w;j++)

printf ("%5d ", p[i][j]);

Contd.

printf ("%5d ", p[i][j]);

printf ("\n");

}

}

Give M and N

3 3

1 2 3

4 5 6

7 8 9

The array read as

1 2 3

4 5 6

7 8 9

int main()

{

int **p;

int M, N;

printf ("Give M and N \n");

scanf ("%d%d", &M, &N);

p = allocate (M, N);

21

p = allocate (M, N);

read_data (p, M, N);

printf ("\nThe array read as \n");

print_data (p, M, N);

return 0;

}
The array read as

Memory Layout in Dynamic Allocation
int **allocate (int h, int w)

{int main()

{

int **p;

int M, N;

printf ("Give M and N \n");

}

printf ("Give M and N \n");

scanf ("%d%d", &M, &N);

p = allocate (M, N);

for (i=0;i<M;i++) {

for (j=0;j<N;j++)

printf ("%10d", &p[i][j]);

printf(“\n”);

}

return 0;

}

Memory Layout in Dynamic Allocation
int **allocate (int h, int w)

int **p;

int i, j;

p = (int **)malloc(h*sizeof (int *));

22

p = (int **)malloc(h*sizeof (int *));

for (i=0; i<h; i++)

printf(“%10d”, &p[i]);

printf(“\n\n”);

for (i=0;i<h;i++)

p[i] = (int *)malloc(w*sizeof(int));

return(p);

Output

3 3

31535120 31535128 31535136

31535152 31535156 31535160

31535184 31535188 31535192

31535216 31535220 31535224

31535120 31535128 31535136

Starting address of each
row, contiguous (pointers
are 8 bytes long)

23

31535152 31535156 31535160

31535184 31535188 31535192

31535216 31535220 31535224

Elements in each row

are contiguous

