
Pointers: Parameter

Passing and Return

1

Passing and Return

Passing Pointers to a Function

� Pointers are often passed to a function as

arguments
� Allows data items within the calling function to be

accessed by the called function, altered, and then

2

accessed by the called function, altered, and then

returned to the calling function in altered form

� Useful for returning more than one value from a

function

� Still call-by-value, but now the address is copied,

not the content

Example: Swapping

int main()

{

int a, b;

a = 5; b = 20;

swap (a, b);

printf (“\n a=%d, b=%d”, a, b); Output

3

printf (“\n a=%d, b=%d”, a, b);

return 0;

}

void swap (int x, int y)

{

int t;

t = x;

x = y;

y = t;

}

a=5, b=20

Parameters
passed by

value, so

changes done

on copy, not
returned to
calling
function

Example: Swapping using pointers
int main()

{

int a, b;

a = 5; b = 20;

swap (&a, &b);

printf (“\n a=%d, b=%d”, a, b);

return 0;

a=20, b=5

Output

4

return 0;

}

void swap (int *x, int *y)

{

int t;

t = *x;

*x = *y;

*y = t;

}

Parameters

passed by

address,
changes done

on the value

stored at that
address

� While passing a parameter to a function, when

should you pass its address instead of the

value?

� Pass address if both these conditions are satisfied

5

� Pass address if both these conditions are satisfied

� The parameter value will be modified inside the function body

� The modified value is needed in the calling function after the
called function returns

� Consider the swap function to see this

Passing Arrays as Pointers

int main()
{

int n;
float list[100], avg;

int main()
{

int n;
float list[100], avg;

Both the forms below are fine in the function body, as

arrays are passed by passing the address of the first

element. Calling function calls it the same way

6

float list[100], avg;
:
avg = average (n, list);
:

}

float average (int a, float x[])
{

:
sum = sum + x[i];

}

float list[100], avg;
:
avg = average (n, list);
:

}

float average (int a, float *x)
{

:
sum = sum + x[i];

}

Returning multiple values from a

function

� Return statement can return only one value

� What if we want to return more than one value?

� Use pointers

7

� Use pointers

� Return one value as usual with a return statement

� For other return values, pass the address of a

variable in which the value is to be returned

Example: Returning max and min

of an array
Both returned through pointers (could have returned one of

them through return value of the function also)

int main()

{

int n, min, max, i, A[100];

void MinMax(int A[], int n, int

*min, int *max)

8

scanf(“%d”, &n);

for (i=0; i<n; ++i)

scanf(“%d”, &A[i]);

MinMax(A, n, &min, &max);

printf(“Min and max are %d,

%d”, min, max);

return 0;

}

{

int i, x, y;

x = y = A[0];

for (i=1; i<n; ++i) {

if (A[i] < x) x = A[i];

if (A[i] > y) y = A[i];

}

*min = x; *max = y;

}

Example: Passing structure pointers

struct complex {

float re;

float im;

};

int main()

void add (struct complex

*x, struct complex *y,

struct complex *t)

{

9

int main()

{

struct complex a, b, c;

scanf(“%f%f”, &a.re, &a.im);

scanf(“%f%f”, &b.re, &b.im);

add(&a, &b, &c) ;

printf(“\n %f %f”, c.re,

c.im);

return 0;

}

t->re = x->re + y->re;

t->im = x->im + y->im;

}

Strings

10

Strings

• 1-d arrays of type char

• By convention, a string in C is terminated by the

end-of-string sentinel ‘\0’ (null character)

• char s[21] - can have variable length string

11

• char s[21] - can have variable length string

delimited with \0

• Max length of the string that can be stored is 20 as

the size must include storage needed for the ‘\0’

• String constants : “hello”, “abc”

• “abc” is a character array of size 4

String Constant

• A string constant is treated as a pointer

• Its value is the base address of the string

char *p = “abc”;

12

char *p = “abc”;

printf (“%s %s\n”,p,p+1); /* abc bc is printed */

a b c \0p

Differences : array & pointers

char *p = “abcde”;

The compiler allocates
space for p, puts the
string constant “abcde”
in memory somewhere

char s[] = “abcde”;

≡ char s[] = {‘a’,’b’,’c’,’d’,’e’.’\0’};

The compiler allocates 6 bytes

of memory for the array s

13

in memory somewhere
else, initializes p with
the base address of
the string constant

of memory for the array s

which are initialized with the

6 characters

a b c d e \0

a b c d e \0

p

S

Library Functions for String

Handling

� You can write your own C code to do different
operations on strings like finding the length of a
string, copying one string to another, appending
one string to the end of another etc.

14

� C library provides standard functions for these
that you can call, so no need to write your own
code

� To use them, you must do
#include <string.h>

At the beginning of your program (after #include
<stdio.h>)

String functions we will see

� strlen : finds the length of a string

� strcat : concatenates one string at the end
of another

15

of another

� strcmp : compares two strings
lexicographically

� strcpy : copies one string to another

strlen()

int strlen(const char *s)

� Takes a null-terminated
strings (we routinely refer

to the char pointer that

int strlen (const char *s) {

int n;

You cannot change contents

of s in the function

16

to the char pointer that

points to a null-terminated

char array as a string)

� Returns the length of
the string, not counting
the null (\0) character

int n;

for (n=0; *s!=‘\0’; ++s)

++n;

return n;

}

strcat()

� char *strcat (char *s1,
const char *s2);

� Takes 2 strings as
arguments,
concatenates them,

char *strcat(char *s1, const char

*s2)

{

char *p = s1;

You cannot change contents

of s2 in the function

17

concatenates them,
and puts the result in
s1. Returns s1.
Programmer must
ensure that s1 points
to enough space to
hold the result.

char *p = s1;

while (*p != ‘\0’) /* go to end */

++p;

while(*s2 != ‘\0’)

*p++ = *s2++; /* copy */

*p = ‘\0’;

return s1;

}

Dissection of the strcat() function

char *p = s1;

p is being initialized, not *p. The pointer p is initialized
to the pointer value s1. Thus p and s1 point to the
same memory location

18

Dissection of the strcat() function

char *p = s1;
p is being initialized, not *p. The pointer p is initialized

to the pointer value s1. Thus p and s1 point to the
same memory location

while (*p != ‘\0’) ++p;
As long as the value pointed to by p is not ‘\0’, p is

19

As long as the value pointed to by p is not ‘\0’, p is
incremented, causing it to point at the next
character in the string. When p points to \0, the
control exits the while statement

Dissection of the strcat() function

char *p = s1;
p is being initialized, not *p. The pointer p is initialized

to the pointer value s1. Thus p and s1 point to the
same memory location

while (*p != ‘\0’) ++p;
As long as the value pointed to by p is not ‘\0’, p is

20

As long as the value pointed to by p is not ‘\0’, p is
incremented, causing it to point at the next
character in the string. When p points to \0, the
control exits the while statement

while(*s2 != ‘\0’) *p++ = *s2++; /* copy */
At the beginning, p points to the null character at the

end of string s1. The characters in s2 get copied
one after another until end of s2

Dissection of the strcat() function

char *p = s1;
p is being initialized, not *p. The pointer p is initialized

to the pointer value s1. Thus p and s1 point to the
same memory location

while (*p != ‘\0’) ++p;
As long as the value pointed to by p is not ‘\0’, p is

21

As long as the value pointed to by p is not ‘\0’, p is
incremented, causing it to point at the next
character in the string. When p points to \0, the
control exits the while statement

while(*s2 != ‘\0’) *p++ = *s2++; /* copy */
At the beginning, p points to the null character at the

end of string s1. The characters in s2 get copied
one after another until end of s2

*p = ‘\0’; put the ‘\0’ at the end of the string

strcmp()

int strcmp (const char
*s1, const char *s2);

Two strings are passed
as arguments. An
integer is returned

22

integer is returned
that is less than,
equal to, or greater
than 0, depending on
whether s1 is
lexicographically less
than, equal to, or
greater than s2.

strcmp()

int strcmp (const char
*s1, const char *s2);

Two strings are passed
as arguments. An
integer is returned

int strcmp(char *s1, const char *s2)

{

for (;*s1!=‘\0’&&*s2!=‘\0’; s1++,s2++)

{

if (*s1>*s2) return 1;

23

integer is returned
that is less than,
equal to, or greater
than 0, depending on
whether s1 is
lexicographically less
than, equal to, or
greater than s2.

if (*s1>*s2) return 1;

if (*s2>*s1) return -1;

}

if (*s1 != ‘\0’) return 1;

if (*s2 != ‘\0’) return -1;

return 0;

}

char *strcpy (char *s1, char *s2);

The characters is the string s2 are copied into s1 until
\0 is moved. Whatever exists in s1 is overwritten. It is
assumed that s1 has enough space to hold the
result. The pointer s1 is returned.

strcpy()

24

result. The pointer s1 is returned.

char *strcpy (char *s1, const char *s2);

The characters is the string s2 are copied into s1 until
‘\0’ is moved. Whatever exists in s1 is overwritten. It
is assumed that s1 has enough space to hold the
result. The pointer s1 is returned.

strcpy()

25

result. The pointer s1 is returned.

char * strcpy (char *s1, const char *s2)
{

char *p = s1;
while (*p++ = *s2++) ;
return s1;

}

Example: Using string functions

25

9

int main()

{

char s1[] = "beautiful big sky country",

s2[] = "how now brown cow";

printf("%d\n",strlen (s1));

printf("%d\n",strlen (s2+8));

Output

26

9

-1

big sky country

beautiful brown cows!

printf("%d\n",strlen (s2+8));

printf("%d\n", strcmp(s1,s2));

printf("%s\n",s1+10);

strcpy(s1+10,s2+8);

strcat(s1,"s!");

printf("%s\n", s1);

return 0;

}

