
Pointers and Arrays

1



Pointers and Arrays

� When an array is declared,

�The compiler allocates sufficient amount of 

storage to contain all the elements of the 

array in contiguous memory locations

2

array in contiguous memory locations

�The base address is the location of the first 

element (index 0) of the array

�The compiler also defines the array name as 

a constant pointer to the first element



Example
� Consider the declaration:

int x[5] = {1, 2, 3, 4, 5};

� Suppose that each integer requires 4 bytes

� Compiler allocates a contiguous storage of size 5x4 = 

20 bytes

3

� Suppose the starting address of that storage is 2500

Element Value Address

x[0]             1           2500

x[1]             2           2504

x[2]             3           2508

x[3]             4           2512

x[4]             5           2516



Contd.

� The array name x is the starting address of the 

array
� Both x and &x[0] have the value 2500

� x is a constant pointer, so cannot be changed

� X = 3400, x++, x += 2 are all illegal

4

� X = 3400, x++, x += 2 are all illegal

� If int *p is declared, then

p = x; and    p = &x[0]; are equivalent

� We can access successive values of x by using 

p++ or p-- to move from one element to another



� Relationship between p and x:

p      =   &x[0]   =   2500

p+1  =   &x[1]   =   2504

p+2  =   &x[2]   =   2508

p+3  =   &x[3]   =   2512

In general, *(p+i) gives 

the value of x[i]

5

p+3  =   &x[3]   =   2512

p+4  =   &x[4]   =   2516

� C knows the type of each element in array x, so 

knows how many bytes to move the pointer to 

get to the next element



Example: function to find 

average
int main()

{

int x[100], k, n;

scanf (“%d”, &n);
float avg (int array[], int size)

{

int  *p, i , sum = 0;

6

for (k=0; k<n; k++)

scanf (“%d”, &x[k]);

printf  (“\nAverage is %f”,

avg (x, n));

return 0;

} 

int  *p, i , sum = 0;

p = array;

for (i=0; i<size; i++)

sum = sum + *(p+i);

return ((float) sum / size);

}



The pointer p can be subscripted 

also just like an array!
int main()

{

int x[100], k, n;

scanf (“%d”, &n);

float avg (int array[], int size)

{

int  *p, i , sum = 0;

7

for (k=0; k<n; k++)

scanf (“%d”, &x[k]);

printf  (“\nAverage is %f”,

avg (x, n));

return 0;

} 

int  *p, i , sum = 0;

p = array;

for (i=0; i<size; i++)

sum = sum + p[i];

return ((float) sum / size);

}



Important to remember
�� Pitfall: An array in C does not know its own length, & 

bounds not checked!

� Consequence: While traversing the elements of an array (either 

using [ ] or pointer arithmetic), we can accidentally access off the 
end of an array (access more elements than what is there in the 
array)

8

array)

� Consequence: We must pass the array and its size to a function 
which is going to traverse it, or there should be some way of 
knowing the end based on the values (Ex., a –ve value ending a 
string of +ve values)

� Accessing arrays out of bound can cause segmentation 

faults

� Hard to debug (already seen in lab)

�Always be careful when traversing arrays in programs



Pointers to 

Structures

9

Structures



Pointers to Structures

� Pointer variables can be defined to store 
the address of structure variables

� Example: 

10

struct student {

int   roll;

char  dept_code[25];

float cgpa;

};

struct student *p;



� Just like other pointers, p does not point to 
anything by itself after declaration
�Need to assign the address of a structure to p

�Can use & operator on a struct student type 

variable

�Example:

11

�Example:

struct student x, *p;

scanf(“%d%s%f”, &x.roll, x.dept_code, &x.cgpa);

p = &x;



� Once p points to a structure variable, the 
members can be accessed in one of two 
ways:

�(*p).roll, (*p).dept_code, (*p).cgpa

� Note the ( ) around *p

�p –> roll, p –> dept_code, p –> cgpa

12

�p –> roll, p –> dept_code, p –> cgpa
� The symbol –> is called the arrow operator

� Example:
� printf(“Roll = %d, Dept.= %s, CGPA = %f\n”, (*p).roll, 

(*p).dept_code, (*p).cgpa);

� printf(“Roll = %d, Dept.= %s, CGPA = %f\n”, p->roll, 

p->dept_code, p->cgpa);



Pointers and Array of Structures

� Recall that the name of an array is the 
address of its 0-th element

�Also true for the names of arrays of structure 

variables.

13

variables.

� Consider the declaration:

struct student class[100],  *ptr ;



� The name class represents the address of the 0-th 

element of the structure array

� ptr is a pointer to data objects of the type struct 

student

� The assignment

ptr = class;

will assign the address of class[0] to ptr

14

will assign the address of class[0] to ptr

� Now ptr->roll is the same as class[0].roll. Same for 

other members
� When the pointer ptr is incremented by one (ptr++) :

� The value of ptr is actually increased by 

sizeof(struct student)

� It is made to point to the next record

� Note that sizeof operator can be applied on any 

data type



A Warning

� When using structure pointers, be careful of 

operator precedence

� Member operator “.” has higher precedence than “*”

� ptr –> roll and    (*ptr).roll mean the same 

thing

15

thing

� *ptr.roll will lead to error

� The operator  “–>”  enjoys the highest priority 

among operators

� ++ptr –> roll will increment ptr->roll, not ptr

� (++ptr) –> roll will access (ptr + 1)->roll (for 

example, if you want to print the roll no. of all elements of 
the class array)


