
Indian Institute of Technology, Kharagpur
Department of Computer Science and Engineering

End-Semester Examination, Autumn 2013-14

Programming and Data Structures (CS 11001)
Students: 700 Date: 25-Nov-13 (FN)

Full marks: 100 Time: 3 hours

Name Roll No. Section

Question No. 1 2 3 4 5 6 Total

Maximum 40 15 10 10 15 10 100

Marks

Marks

Obtained

Evaluator PG SD JM DS PPD AG

This question paper comprises 6 questions in 16 pages (8 sheets) 01

Instructions:

1. Write your name, roll number and section in the space above.

2. On the top of every odd page write your roll number.

3. Answer all questions in the space provided in this paper itself. No extra sheet will be provided.

4. Use the designated spaces for rough work.

5. Marks for every question is shown with the question.

6. No further clarifications to any of the questions will be provided.

1

1. Answer the following questions:

(a) Convert 6f2.5bc (in hexadecimal system) to the octal number system. [2 marks]

Answer: 3362.2674

Note for Marking: 1 mark for the integral part and 1 mark for the fractional part.

(b) Convert 129.5625 (in decimal system) to the hexadecimal system. [2 marks]

Answer: 81.9

Note for Marking: 1 mark for the integral part and 1 mark for the fractional part.

(c) Represent -77 (in decimal system) in binary 8-bit signed-magnitude, 1’s complement, and 2’s complement
representations. You need not show the steps of conversion. [1 * 3 = 3 marks]

Answer:

-77 = 11001101 (Signed Magnitude)

-77 = 10110010 (1’s Complement)

-77 = 10110011 (2’s Complement)

(d) You are asked to generate the following alternating variant of the Fibonacci series fa(n), n ≥ 0:

0,−1, 1,−2, 3,−5, 8,−13, · · ·

i. Specify the base conditions (on n) and the recursive expression for fa(n) in every case to complete
the recurrence for fa(n): [(0.5 + 0.5) + (0.5 + 0.5) + (1.5 + 0.5) = 4 marks]

Answer:

f_a(n) = 0, for n = 0 [Base Condition 1]

- -----

= -1, for n = 1 [Base Condition 2]

-- -----

= f_a(n-2) - f_a(n-1), for n > 1 [Recurrence]

------------------- -----

Note for Marking: Conditions (on n) must be exact. Any equivalent expression for fa(n) (like
fa(n) = n, for n = 0 or fa(n) = −n, for n = 1) is acceptable in every case. No partial marking in
case of the expression for n > 1.

2

Roll No:

ii. Complete the following code segment that prints fa(n) for n = 0, 1, 2, · · · ,m:
[1 + 2 + 1 = 4 marks]

Answer:

void f_a(int m) {

int n, x = 0, y = -1;

for(n = 0; n < m; ++n) {

int t = y;

-

printf("f_a(%d) = %d\n", n, x);

y = x - y;

x = t;

-

}

}

Note for Marking: y = x - t (or any equivalent expression) is acceptable in place for y = x - y.

(e) FindMinMax is a function that takes an array A of int and the number of elements n in A as input and
returns the minimum as well as maximum values in A through parameters.

i. Fill up the parameter types in the prototype of FindMinMax. [1 * 2 = 2 marks]

Answer:

void FindMinMax(int A[], int n, int* min, // Parameter for minimum value

int* max); // Parameter for maximum value

Note for Marking: Just the data type int* is acceptable as an answer. Variable names should be
ignored for marking.

ii. If int min and int max are variables to hold the minimum and the maximum values respectively of
int X[], write a call to FindMinMax to match the above prototype. [0.5 * 2 = 1 mark]

Answer: FindMinMax(X, n, &min, &max);

---- ----

iii. Alternatively, if the return type of FindMinMax is int as in the following prototype, fill up the data
types in the prototype and the details in the call to FindMinMax? [0.5 * 4 = 2 marks]

Answer:

// Returns the minimum value as function return value

// and the maximum value through parameter

int FindMinMax(int A[], int n, int *max);

--- --------

// In the caller - int min and int max hold the minimum and

// the maximum values respectively for int X[]

min = FindMinMax(X, n, &max);

--- ----

3

(f) Consider the following code snippet:

p = (int *)malloc(sizeof(int));

q = &p;

r = &q;

i. Write the data types of p, q, and r. [1 * 3 = 3 marks]

Answer:

int * p;

int ** q;

int *** r;

ii. Show how to allocate an array of 20 pointers (of appropriate type) to r? [1 * 2 = 2 marks]

Answer:

r = (int ***)malloc(20*sizeof(int **));

------- -----------------

Note for Marking: Any equivalent sizeof expression like 20*sizeof(*r) or 20*sizeof(r) or
20*sizeof(int *) or 20*sizeof(void *) or any expression using the size of a pointer variable
would be acceptable. However, machine-dependent expressions like 20*4 or 80 would not be acceptable.

(g) You are sorting the following array in ascending order using InsertionSort.

6 2 7 1 3

Show the contents of the array after every iteration of the sort (Iteration 0 is the input array).

[1 * 4 = 4 marks]

Answer:

Index

Iteration 0 1 2 3 4

0 6 2 7 1 3

1 2 6 7 1 3

2 2 6 7 1 3

3 1 2 6 7 3

4 1 2 3 6 7

Note for Marking: Award mark if all elements of the array are correct after each iteration.

4

Roll No:

(h) Data are pushed to (PUSH operation) and popped from (POP operation) a stack in the following order:

PUSH 3; TOP; PUSH 7; TOP; PUSH 6; PUSH 9; TOP; POP; POP; TOP;

where the PUSH, POP and TOP operations of stack behave as discussed in the class.

Write the values returned by TOP for the sequence of operations above. [0.5 * 4 = 2 marks]

Answer:

3 7 9 7

- - - -

(i) A stack of int is implemented using an array as the following data type:

#define SIZE 20

typedef struct {

int data[SIZE];

int top;

} Stack;

Fill up the missing codes in the PUSH, POP, and TOP operations of the Stack. [1 * 3 = 3 marks]

Answer:

void Push(Stack *s, int d) {

s->data[++s->top] = d;

}

void Pop(Stack *s) {

--s->top;

}

int Top(Stack *s) {

return s->data[s->top];

}

Note for Marking: Equivalent pointer de-referencing expressions like (*s).data in place of s->data

are acceptable as long as they are correct and are expressed in single expressions. Hence, statements like
++s->top; s->data[s->top] = d; are not acceptable in place of s->data[++s->top] = d;.

5

(j) Data are enqueued to (ENQ operation) and dequeued from (DEQ operation) a queue in the following order:

ENQ 3; FRONT; ENQ 7; FRONT; ENQ 6; ENQ 9; FRONT; DEQ; DEQ; FRONT;

where the ENQ, DEQ and FRONT operations of queue behave as discussed in the class.

Write the values returned by FRONT for the sequence of operations above. [0.5 * 4 = 2 marks]

Answer:

3 3 3 6

- - - -

(k) A queue of int is implemented using a circular array as the following data type:

#define SIZE 20

typedef struct {

int data[SIZE];

int front, rear;

} Queue;

Fill up the missing codes in the IsEmpty and IsFull operations of the Queue. [2 * 2 = 4 marks]

Answer:

int IsEmpty(Queue *q) {

return q->front == q->rear;

}

int IsFull(Queue *q) {

return q->front == (q->rear+1) % SIZE;

}

Note for Marking: Allow 1 mark each for the two sides of == in the expressions. Deduct 0.5 mark
if = is written in place of ==. Deduct 1 mark if != is written in place of ==. Equivalent pointer de-
referencing expressions like (*q).front in place of q->front are acceptable as long as they are correct
and are expressed in single expressions. No other partial marking is allowed.

6

Roll No:

2. Consider the following polynomial P (x) of degree n in x: P (x) = anx
n + an−1x

n−1 + · · ·+ a0 =
∑n

i=0 aix
i

We can represent P (x) as a pair of variables – degree n and an array a of its coefficients as:

#define MAX_POLY_SIZE 100 // Maximum degree

double a[MAX_POLY_SIZE+1]; // Array of coefficients

unsigned int n; // Degree of polynomial

(a) EvalPoly takes a polynomial P (x) (degree n and coefficient array a) and x as input and returns the value
of the polynomial P (x) at x. Fill up the missing codes in function EvalPoly. [1 * 2 = 2 marks]

Answer:

double EvalPoly(double a[], // Array of coefficients

unsigned int n, // Degree of polynomial

double x) { // Value of unknown x for evaluation

double val = 0.0; // Value of the polynomial

double pow_x = 1.0; // Powers of x

unsigned int i; // Index

for(i = 0; i <= n; ++i) {

val += a[i]*pow_x; // Accumulate the next term

pow_x *= x; // Compute the next power of x

--

}

return val;

}

Note for Marking: Any equivalent expression like interchanging of operands of multiplication (like val

+= pow x*a[i];) are acceptable in place of val += a[i]*pow x;. Array indexing by pointer expressions
like *(a+i) for a[i] is also acceptable. pow x = pow x * x; or any expression equivalent to it is also
acceptable in place of pow x *= x;.

(b) The above polynomial can be written in a fully parenthesized form (known as Horner’s Form) as:

P (x) = anx
n + an−1x

n−1 + · · ·+ a0 = (· · · (((anx + an−1)x + an−2)x + an−3)x + · · ·)x + a0

Complete the following implementation of EvalPoly using the Horner’s Form. [0.5 * 4 + 1 = 3 marks]

Answer:

double EvalPoly(double a[], // Array of coefficients

unsigned int n, // Degree of polynomial

double x) { // Value of unknown x for evaluation

double val = 0.0; // Value of the polynomial

unsigned int i; // Index

val = a[n]; // Initial value

for(i = n; i > 0; --i) {

- ----- ---

val = val*x+a[i-1]; // Iterative accumulation of value

}

return val;

}

Note for Marking: Array indexing by pointer (like *(a+i) for a[i]) and re-ordering of operands (like
0 < i for i > 0), equivalent expressions (like i-- for --i) are acceptable if correct.

7

(c) Complete the function AddPoly to add two polynomials a and b (as degree and coefficient array pair) and
generate a sum polynomial c: [1 * 5 = 5 marks]

Answer:

unsigned int // Degree of the sum polynomial

AddPoly(

double a[], unsigned int m, // First polynomial

double b[], unsigned int n, // Second polynomial

double c[]) { // Coefficients of the sum polynomial

unsigned int i = 0; // Index

while (i <= m && i <= n) // Add common terms

------ ------

c[i++] = a[i]+b[i];

while (i <= m) // Handle extra terms of first polynomial

c[i++] = a[i];

while (i <= n) // Handle extra terms of second polynomial

c[i++] = b[i];

return (m > n)? m: n; // Return the degree of sum polynomial

}

Note for Marking: Array indexing by pointer (like *(a+i) for a[i]), re-ordering of operands (like m

>= i for i <= m) are acceptable if correct. Return value may be i-1 or --i in place of (m>n)?m:n.

(d) Consider the function EvalPolyDerivative that takes a polynomial P (x) (degree n and coefficient array
a) and x as input and returns the value of the derivative dP (x)/dx at x. For example, if P (x) =
7x3 − 2x2 + 5x + 2, EvalPolyDerivative will evaluate P ′(x) = 21x2 − 4x + 5. Fill up the missing codes
in EvalPolyDerivative. You may use the functions written above. [1 + 2 + 1 * 2 = 5 marks]

Answer:

double EvalPolyDerivative(

double a[], // Array of coefficients

unsigned int n, // Degree of polynomial

double x) { // Value of unknown for evaluation

unsigned int i; // Index

double b[MAX_POLY_SIZE]; // Array of coefficients of

// derivative polynomial

for(i = 0; i < n; ++i) {

b[i] = a[i+1]*(i+1); // Perform derivative

}

return EvalPoly(b, n-1, x); // Evaluate derivative polynomial

-------- ---

}

Note for Marking: Array indexing by pointer (like *(a+i+1) for a[i+1]), re-ordering of operands (like
n > i for i < n) are acceptable if correct.

8

Roll No:

3. It is required to fill up a 2D array A with a zigzag pattern that starts from the left-top corner with 00. The
numbers are filled up sequentially along the anti-diagonals with the direction alternating between up (from
south-west (SW) to north-east (NE): 01 --> 02) and down (from NE to SW: 03 --> 04 --> 05) as follows:

Answer:

00 02 03 09 10 XX 21

(20) --

01 04 08 11 XX

(19)

05 07 12 XX

(18)

06 13 XX

(17)

14 XX

(16)

15

--

ROUGH WORK
Use this space for your rough work, if any.

This part will not be evaluated.

(a) Study the above pattern carefully and fill up the dashed values. You need to compute the values marked
as XX, but you do not need to write them. There is no separate credit for writing XX’s. [1 * 2 = 2 marks]

(b) Fill up the missing codes below to generate the above pattern in array A in the order mentioned above:
[1 * 8 = 8 marks]

Answer:

int A[20][20]; // The 2D Array

int n = 10; // Number of anti-diagonals to fill

int val = 0; // Next value to fill up. Starts with 0

int dir = 1; // Direction of fill up. dir = 1 means direction is downward

// from north-east (NE) to south-west (SW), 0 otherwise

int i, j; // Indices

int k; // Anti-Diagonal control index

for(k = 0; k < n; ++k) { // Control the diagonal to fill

for(i = 0; i <= k; ++i) { // One index of A

j = k - i; // Other index of A

if (dir) // Decide direction and choose fill location

A[i][j] = val++; // Downward fill. From north-east to south-west

- -

else

A[j][i] = val++; // Upward fill. From south-west to north-east

- -

}

dir = 1 - dir; // Change direction

}

Note for Marking: Equivalent expressions like (dir)?0:1 that takes 0 to 1 and 1 to 0 are acceptable
in place of dir = 1 - dir. Re-ordering of operands (like k >= i for i <= k) are acceptable if correct.

9

4. The following questions use a linked list consisting of nodes as:

typedef struct Node_ {

char data;

struct Node_ *next;

} Node;

Variable Node *head; holds the header of the list.

(a) Compute FindSpecialChar(str) for str = "merge", "memory", and "recursion" to get an idea for
what the function FindSpecialChar(str) does. State the output (return value) of FindSpecialChar(str)
in words for a given str. [1 + 1 + 1 + 2 = 5 marks]

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

char FindSpecialChar(char *str) {

Node *head = (Node *)malloc(sizeof(Node));

Node *p = head;

Node *q = 0, *r = 0;

int i, n = strlen(str);

// Form a list with the characters of the string

for(i = 0; i < n - 1; ++i) {

p->data = str[i];

p->next = (Node *)malloc(sizeof(Node));

p = p->next;

p->next = 0;

}

p->data = str[n - 1];

// Find a special character

q = p = head;

while (p) {

p = p->next;

if (p) {

p = p->next;

q = q->next;

}

}

return q->data;

}

ROUGH WORK
Use this space for your rough work, if any.

This part will not be evaluated.

Answer:

For input "merge", the output is: r

-

For input "memory", the output is: o

-

For input "recursion", the output is: r

-

Given str, the output is: the middle character in str

Note for Marking: Separate explanations for strings of odd and even lengths are acceptable as long as
middle character is mentioned.

10

Roll No:

(b) You need to write Node *ReverseList(Node *p) to reverse the nodes in a given linked list. That is,

head = ReverseList(head);

will take a list held by head, reverse it and put back to head.

Fill up the missing codes in Node *ReverseList(Node *p) below. [1 * 5 = 5 marks]

Answer:

Node *ReverseList(Node *p) {

if (!p) return 0;

if (p->next) {

Node *q = ReverseList(p->next);

p->next->next = p;

p->next = 0;

return q;

}

return p;

}

Note for Marking: NULL in place of 0 is acceptable. De-referencing expressions like (*p).next in place
of p->next are acceptable if correct.

11

5. The function int *Place(int *left, int *right); takes two pointers left and right to two locations in
an array, say A, of int such that the index value lIndex of the element pointed to by left is less than the
index value rIndex of the element pointed to by right. Clearly, left = &A[lIndex], right = &A[rIndex]

and lIndex < rIndex. Assume that the elements in A[] are all distinct.

int *Place(int *left, int *right) places the element num = A[lIndex] pointed to by left at a position
pIndex (lIndex <= pIndex <= rIndex) such that all elements between A[lIndex] and A[pIndex-1] are less
than A[pIndex] and all elements between A[pIndex+1] and A[rIndex] are greater than A[pIndex]. The
function int *Place(int *left, int *right) does not disturb any element outside the range of A[lIndex]
.. A[rIndex] and returns &A[pIndex] after the placement.

For example, for A[] =

0 1 2 3 4 5 6 7 8 9 10 11

5 4 10 7 3 9 12 11 6 8 13 14

lIndex = 2 and rIndex = 8 (left = &A[2] and right = &A[8]), int *Place(int *left, int *right)

places A[2] = 10 at &A[6], sets A[] as

0 1 2 3 4 5 6 7 8 9 10 11

5 4 6 7 3 9 10 11 12 8 13 14

computes pIndex as 6 and returns &A[6].

(a) Express the following in terms of left, right, and A only. [1 * 4 = 4 marks]

Answer:

lIndex = left - &A[0]

rIndex = right - &A[0]

A[lIndex] = *left

A[rIndex] = *right

Note for Marking: Equivalent address expressions like left - A in place of left - &A[0] are accept-
able if correct.

(b) Given the bounds left and right, write an expression of them for the number of elements of A that lie
between these bounds (both ends included). For example, for the above example, if (left = &A[2] and
right = &A[8]), the number of elements between them (counting both ends) is 7. [2 marks]

Answer:

Number of elements = right - left + 1

12

Roll No:

(c) Fill up the missing codes in the function below where void Swap(int *p, int *q); is a function that
takes two pointers to int variables and swaps their values. [2 + 2 + 1 + 1 + 1 = 7 marks]

Answer:

void Swap(int *p, int *q);

int *Place(int *left, int *right)

{

int num = *left; // Element to place

int *l = left; // Left scanning pointer

int *r = right; // Right scanning pointer

// Repeat from two ends till the ends meet

while (l < r){

// Scan from left to find the first element greater than num

while(*l <= num && l <= right) ++l;

// Scan from right to find the first element smaller than num

while(*r > num) --r;

if (l < r) {

// Interchange the two wrongly placed elements

Swap(l, r);

-- --

--r;

}

}

// Final interchange

Swap(r, left);

// Return position

return r;

--

}

Note for Marking: Re-ordering of operands (like num >= *l for *l <= num) are acceptable if correct.

(d) What property should be satisfied by the elements of A so that every call to int *Place(int *left,

int *right) would have no effect on A and would simply return left? Write this property in words.

[2 marks]

Answer:

A is sorted in increasing order.

13

6. Answer the following questions:

(a) You are given two text files with the following contents:

File Name File Contents Remarks

INPUT.txt 29 48 Contains one line

OUTPUT.txt 97 6 124 Contains two lines

Second line is blank

These files are used for IO with the following program.

#include <stdio.h>

#include <stdlib.h>

int main() {

int i = 5, j = 17;

FILE *ifp = 0, *ofp = 0;

// Open and read file

if (ifp = fopen("INPUT.txt", "r")) {

printf("Reading file\n");

fscanf(ifp, "%d %d", &i, &j);

}

else { printf("Cannot read INPUT.txt"); exit(0); }

fclose(ifp);

// Open and write file

if (ofp = fopen("OUTPUT.txt", "a")) {

printf("Writing file\n");

fprintf(ofp, "%d", i);

}

else { printf("Cannot write to OUTPUT.txt"); exit(0); }

// Code Point A

fclose(ofp);

// Open and write file

if (ofp = fopen("OUTPUT.txt", "w")) {

printf("Writing file\n");

fprintf(ofp, "%d\n%d", j, i);

}

else { printf("Cannot write to OUTPUT.txt"); exit(0); }

// Code Point B

fclose(ofp);

return 0;

}

14

Roll No:

i. Write the contents of file OUTPUT.txt at the marked points. [1 * 4 = 4 marks]

Answer:

@ Code Point A

97 6 124

29

--

@ Code Point B

48

--

29

--

ii. What will be the output to the console if the file INPUT.txt is missing? [1 mark]

Answer:

Cannot read INPUT.txt

15

(b) Consider the following program that accepts arguments from the command line:

Answer:

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

// main with Command line parameters

void main(int argc, char *argv[]) {

--- ------

int i;

double d;

char s[20];

// Print the number of arguments

printf("argc = %d\n", argc);

// Print the 1st argument

printf("argv[0] = %s\n", argv[0]);

// Set the 2nd argument (int) to i

sscanf(argv[1], "%d", &i);

}

Note for Marking: Solution using atoi, that is, i = atoi(argv[1]); in place of sscanf is also
acceptable. If sscanf is used, award 1 mark for argv[1], 0.5 mark for %d, and 0.5 mark for &i. If atoi

is used, award 1 mark for argv[1], and 1 mark for i = . No other solution is acceptable.

This program is compiled into an executable file "C:\Programs\CommandLine.exe" and is executed from
C:\Programs> folder as

CommandLine.exe 27

i. Fill up the missing codes in the program. [0.5 * 2 + 2 = 3 marks]

ii. Write the output of the program. [1 * 2 = 2 marks]

Answer:

argc = 2

-

argv[0] = C:\Programs\CommandLine.exe

Note for Marking: argv[0] is acceptable as long as CommandLine.exe is mentioned. Writing the
path is optional.

16

