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General concepts



The concept of SM

• SM are systems operating on sequences:
– F: InputSignals -> OuputSignals

where both input signals and output signals have the 
form:
• EventStream: Naturals

0
-> Symbols

– This definition captures the concept of ordering
between events

– Reference to time (discrete or continuous) is neither 
explicit nor implied

• Crucial is the definition of a state that 
summarises the past story of the system

{0,1,2,...}



Example

Code Recognizer

Example:

x={x(0), x(1), …}

xœInputSignals

y={y(0), y(1), …}

yœOutputSignals

x œ InputSignals = [Nats0→{0,1}]
y œ OutputSignals = [Nats0→{True, False}]

Ì True if x(n)=0 ⁄
x(n-1)=1 ⁄ x(n-2)=0
Recognizer(x)(n) = Ó

Ô False
otherwise

x={0,0,0,1,0,0 …} → y={-, -, False, False, True, False}



A  formal definition

A state machine has several components:

States Set of possible states (called state space)

Inputs Set of possible input elements (called input alphabet) 

Outputs Set of possible output elements (called output alphabet) 

update: States × Inputs -> States × Outputs the update function
The update function defines the new state and output given the 
current state and input.

initialState The initial state

Thus, a state machine can be described as a 5-tuple:

(States, Inputs, Outputs, update, initialState) 



Update 

• SM are causal: output depends only on the current 
state (that summarises the past history of the 
system) and on the current inputs

• The update dunction is often split into two functions:

update = (nextState, output),
nextState: States x Inputs → States
output: States x Inputs → Outputs
so that
(s(n+1), y(n)) = update(s(n), x(n))
s(n+1) = nextState(s(n), x(n))
y(n) = output(s(n), x(n))



Conceptual scheme

Update

Output

D1

x(n) y(n) 

s(n) 

One step delay
(memory)



Stuttering

We define a special “do nothing” input called absent.

When x(n) = absent, 

• the state does not change, so s(n+1) = s(n);

• the output is also “nothing”, i. e. y(n) = absent.

• We can always add absent symbols to input sequences 
without changing non absent outputs 

This symbol, absent, is called the stuttering symbol.

Note that this symbol is always a possible input and output, so

absent œ Inputs, absent œ Outputs



FSM

• We will restrict to the case of machines having a 
finite state: Finite State Machines

• We will also restrict to the case of finite input and 
output alphabet



Update tables

• Update functions can be specificied using tables

• Parity example:

s(n) = odd

s(n) = even

x(n) = Falsex(n) = True

(s(n+1), y(n)) = update(s(n), x(n)) 

(odd, True) (even, False) 

(even, False) (odd, True) 



State transition diagrams

• State transition diagrams are a popular way for 
representing state machines

– Bubbles represent states

– Directed Arcs represent transitions

• Transition are enabled by a guard 

–Guards are collections of input symbols

• Transitions can also be associated to outputs

State

guard1/output1

guard2/output2

else

Intial state



Excercise

Draw the transition diagram of a state machine 
with

Inputs     =  Bools 

Outputs   =  Bools

At all times t, the output is true iff the inputs at 

times t-2, t-1, and t are all true .



Exercise - (continued) 

State after i-th input :

0,   if i-th input is false ( or i = 0 ) 

1,    if i-th input is true and (i-1)-th input is 

false

2,   if both i-th and (i-1)-th inputs are true

Three 

states

( or i = 1 ) 



Exercise - (Continued) 

Transition Diagram

States =  { 0, 1, 2 }   

Inputs    =  Bools

Outputs =  Bools

0 21

true / false

false / false

false / false false / false true / true

true / false



State transition diagrams

• An example

init

a

b

0/f 0/f

0/t

1/f

1/f 1/f

x ∈∈∈∈ InputSignals y∈∈∈∈OutputSignals

x = (0,      1,     0,    0,    0,    0,    1,    1, …)
s = (init,   a,  init,    a,    b,    b,    b, init, …)
y = (f,      f,      f,    f,    t,    t,     f,    f, …) 

s(0) = init
(s(n+1), y(n)) = update (s(n), x(n)), n = 0,1,…



Shorthand

• If no guard is specified the transition is always taken 
(except for the stuttering symbol) 

• If no output symbol is specified then the output is the 
stuttering symbol

• If no else transition is specified then we assume a self 
loop

• If inputs are {a,b,c,d,...,z} we can use {not a} in a guard 
instead of {b,c,...,z}



Shorthand

• The else loop

init

a

b

{0}/abs {0}/abs

else

else

x∈∈∈∈[Nats0→

{0,1,2, absent}]

y∈∈∈∈[Nats0 →

{t,absent}]

else 0/t



Some terminology

• Receptiveness: our SM always react to a 
symbol (there is an outgoing arc specified, or an 
else arc either specified or implied) 

• Determinism: a SM is said deterministic if every 
input symbols is contained in one and only one 
outgoing arc

• State transitions triggered by a sequence of 
inputs are called State response

• A finite machine without output is called finite 
automata



Finite automata

• Finite automata can be used to recognize patterns 
expressed by regular expressions

• In this case it is useful to introduce other markers 
(finite state) where the system arrives when it 
recognises a correct expression

• In this case we may consider unreceptive machine 
(i.e., the machine may not accept all events in all 
state) 
– as a consequence we may have deadlock



Finite automata - Example

• Consider the language composed of the 
expression:

• It is recognised by the following automaton

b , ab , aab , aaab , aaaab , ...

s0
s1

s2

s3a
a

b

b

a|b



Finite automata - Example

• Consider the language:

• It cannot be regognised by any finite automata. 
Why?

ab , aabb , aaabbb , aaaabbbb , , ...



0 1

{coin5}/safe

{tick}/expired

5

{tick}/

expired

{tick}/safe

...

{coin5}/safe

... 25

{tick}/safe

{coin25}/safe {coin25}/safe

60

{tick}/safe

...

{coin5,

coin25}/

safe
{coin5}/

safe

{coin25}/

safe

{coin5}

/safe

60-min 
Parking meter

{tick, coin5,
coin25, absent}

{safe, expired,
absent}

Finite automata – Parking meter example
(from Lee-Varaija book)



x = 0 0 1 1 0 …
s = 0 0 0 1 1 0  …
y = 0 0 0 1 1 0 …

InputSignals = OutputSignals = [Nats0→ {0,1, absent}]

∀x ∈ InputSignals, ∀n ∈ Nats0, Delay(x)(n)=0,         n=0;
= x(n-1), n > 0

{1}/0

0 1
{0}/0 {1}/1

{0}/1

Delay

Finite automata – delay example
(from Lee-Varaija book)



∀x ∈ InputSignals, ∀n ∈ Nats0, Delay2(x)(n) =  0,         n = 0,1;
= x(n-2),  n = 2,3,…

Implement Delay2 as state machine

We will see later that Delay2 ~ Delay1 ° Delay1

00

01

10

11

{1}/0
{1}/0

{0}/1

{0}/1

{1}/1

{0}/0
{1}/1{0}/0

Finite automata – 2-delay example
(from Lee-Varaija book)



Some definitions - (continued) 

• The state machines addressed here are called Mealy 
machines.  Mealy machines generate outputs during state 
transitions.  

• Moore machines generate output while the system is in a 
particular state (output depends on state only).

Mealy Moore

Update

Output

∆1

x(n) 
y(n) 

s(n) 

Update

Output

∆1

x(n) 

y(n) 

s(n) 



Some facts

– A SM is stateA SM is stateA SM is stateA SM is state----determined: determined: determined: determined: Each transition and output 
depends only on the current state and current input.  
• Previous input elements only affect the transitions 

and output insofar as they determine the current 
state.

– A representation of a SM may not be unique
– Representations of a SM

• Update tables (useful in computer implementations) 
• State transition diagrams (human friendly) 
• Sets and Functions (useful for mathematical 

purposes) 



Nondeterministic State Machines

Nondeterministic state machines are like the deterministic 
state machines, except there may be more than one 
possible transition for a given current state and input.

a b

0/0

1/1
{0,1}/1

0/0

When in state s(n)=b,
if x(n) = 0,
the next state s(n+1) 
can be either a or b.

The output y(n) 
can be either 0 or 1.

In a nondeterministic state machine, there is more 
than one possible state response and output 
sequence.



Nodeterministic State Machines:  Parts

Nondeterministic state machines are described with the  5-tuple:

(States, Inputs, Outputs, possibleUpdates, initialState) 

The update function is now called possibleUpdates.

For a given input x(n) and current state s(n), possibleUpdates
provides the set of possible next states s(n+1) and outputs y(n). 

possibleUpdates: States × Inputs -> P(States × Outputs)

Here, the notation P() denotes the power set.  For some set S, 
P(S) is the set of all subsets of S.



Nondeterministic State Machines:  Example

Provide the 5-tuple definition for the following state 
machine:

a b

0/0

1/1
{0,1}/1

0/0

States = {a, b}

Inputs = {0, 1, absent}

Outputs = {0, 1, absent}

initialState = a

s(n) = b

s(n) = a

x(n) = 1x(n) = 0

(s(n+1), y(n)) = possibleUpdates(s(n), x(n)) 

(a, 0) (b, 1) 

{(b, 1), (a, 0)} (b, 1) 



Why nondeterminism?

-modeling randomness

-modeling abstraction

-... 



Modeling randonmess

Coin Tossing

toss  / heads

toss / tails

Coin Nats0 → { heads, tails }



Modeling randonmess

One possible behavior
Time   0         1          2          3          4
Input toss     toss toss toss toss
Output      heads  heads tails   heads  tails

Another possible behavior

Time           0          1          2          3           4
Input toss    toss toss toss toss
Output      tails     heads  tails     heads    heads



Nondeterministic State Machines:  Abstraction

This example is a deterministic model of a parking meter.

The inputs are coin5 (5 minutes) coin25 (25 minutes) and tick.

The outputs are safe and expired.

The states represent the number of minutes left until expiration.

This model of meter operation is accurate, but complicated!



Here is a nondeterministic model of the parking meter.

It contains less detail – it is an abstraction of the previous model.

But, some outputs are possible in this model that are impossible in the 
previous model:

x = coin5, tick, tick can result in       y = safe, safe, expired

The meter expires 2 minutes after inserting a 5 minute coin!

Nondeterministic State Machines:  Abstraction


