Trees

Overview

- Tree data structure
- Binary search trees
- Support O($\log _{2} \mathrm{~N}$) operations
- Balanced trees
- STL set and map classes
- B-trees for accessing secondary storage
- Applications

Trees

Definitions

- A tree T is a set of nodes that form a directed acyclic graph (DAG) such that:
- Each non-empty tree has a root node and zero or more subtrees T_{1}, \ldots, T_{k}

Recursive definition

- Each sub-tree is a tree
- An internal node is connected to its children by a directed edge
- Each node in a tree has only one parent
- Except the root, which has no parent

Definitions

- Nodes with at least one child is an internal node
- Nodes with no children are leaves
- "Nodes" = Either a leaf or an internal node
- Nodes with the same parent are siblings
- A path from node n_{1} to n_{k} is a sequence of nodes $n_{1}, n_{2}, \ldots, n_{k}$ such that n_{i} is the parent of n_{i+1} for $1 \leq i<k$
- The length of a path is the number of edges on the path (i.e., $k-1$)
- Each node has a path of length 0 to itself
- There is exactly one path from the root to each node in a tree
- Nodes $\mathrm{n}_{\mathrm{i}}, \ldots, \mathrm{n}_{\mathrm{k}}$ are descendants of n_{i} and ancestors of n_{k}
- Nodes n_{i+1}, \ldots, n_{k} are proper descendants
- Nodes n_{i}, \ldots, n_{k-1} are proper ancestors of n_{i}

Definitions: node relationships

The path from A to Q is $A-E-J-Q$ (with length 3)
A, E, J are proper ancestors of Q
$\mathrm{E}, \mathrm{J}, \mathrm{Q}, \mathrm{I}, \mathrm{P}$ are proper descendants of A

Definitions: Depth, Height

- The depth of a node n_{i} is the length of the \rightarrow path from the root to n_{i}

Can there be more than one?

- The root node has a depth of 0
- The depth of a tree is the depth of its deepest leaf
- The height of a node n_{i} is the length of the longest path under n_{i}^{\prime} 's subtree
- All leaves have a height of 0
- height of tree $=$ height of root $=$ depth of tree

Trees

Cpt S 223. School of EECS, WSU

Implementation of Trees

- Solution 1: Vector of children

```
Struct TreeNode
{
    Object element;
    vector<TreeNode> children;
}
```

Direct access to children[i] but...
Need to know max allowed children in advance \& more space

- Solution 2: List of children

```
Struct TreeNode
{
    Object element;
    list<TreeNode> children;
}
```


Implementation of Trees

- Solution 3: Left-child, right-sibling

```
Struct TreeNode
{
    Object element;
    TreeNode *firstChild;
    TreeNode *nextSibling;
}
```

Guarantees 2 pointers per node (independent of \#children)

But...

Access time proportional to \#children

Cpt S 223. School of EECS, WSU

Binary Trees (aka. 2-way trees)

- A binary tree is a tree where each node has no more than two children.


```
struct BinaryTreeNode
{
    Object element;
    BinaryTreeNode *leftChild;
    BinaryTreeNode *rightChild;
```

- If a node is missing one or both children, then that child pointer is NULL

Example: Expression Trees

- Store expressions in a binary tree
- Leaves of tree are operands (e.g., constants, variables)
- Other internal nodes are unary or binary operators
- Used by compilers to parse and evaluate expressions
- Arithmetic, logic, etc.
- E.g., $(a+b * c)+((d * e+f) * g)$

Cpt S 223. School of EECS, WSU

Example: Expression Trees

- Evaluate expression
- Recursively evaluate left and right subtrees
- Apply operator at root node to results from subtrees
- Traversals (recursive definitions)
- Post-order: left, right, root
- Pre-order: root, left, right
- In-order: left, root, right

Traversals for tree rooted under an arbitrary "node"

- Pre-order: node - left - right
- Post-order: left - right - node
- In-order: left - node - right

Traversals

- Pre-order: $++\mathrm{a} * \mathrm{bc} \mathrm{c}^{* *}+\mathrm{def}$
- Post-order: $\mathrm{a} b \mathrm{c} *+\mathrm{de} \mathrm{e}^{*} \mathrm{f}+\mathrm{g}^{*}+$
- In-order: $a+b * c+d$ *e +f*g

Example: Expression Trees

- Constructing an expression tree from postfix notation
- Use a stack of pointers to trees
- Read postfix expression left to right
- If operand, then push on stack
- If operator, then:
- Create a BinaryTreeNode with operator as the element
- Pop top two items off stack
- Insert these items as left and right child of new node
- Push pointer to node on the stack

Example: Expression Trees

- E.g., a b + c de+**
stack
(1)

Example: Expression Trees

- E.g., a b + c de+**

Binary Search Trees

- "Binary search tree (BST)"
- For any node n, items in left subtree of n \leq item in node n
\leq items in right subtree of n

Which one is a BST and which one is not?

Searching in BSTs

```
Contains (T, x)
{
    if (T == NULL)
    then return NULL
    if (T->element == x)
    then return T
    if (x < T->element)
    then return Contains (T->leftChild, x)
    else return Contains (T->rightChild, x)
}
```

Typically assume no duplicate elements.
If duplicates, then store counts in nodes, or each node has a list of objects. Cpt S 223. School of EECS, WSU

Searching in BSTs

- Time to search using a BST with N nodes is $\mathrm{O}(?)$
- For a BST of height h, it is $O(h)$
- And, h = O(N) worst-case (2)
- If the tree is balanced, then $\mathrm{h}=\mathrm{O}(\lg \mathrm{N})$

Searching in BSTs

- Finding the minimum element
- Smallest element in left subtree

```
findMin (T)
{
    if (T == NULL)
    then return NULL
    if (T->leftChild == NULL)
    then return T
    else return findMin (T->leftChild)
}
```


- Complexity ? $O(h)$

Searching in BSTs

- Finding the maximum element
- Largest element in right subtree

```
findMax (T)
{
    if (T == NULL)
    then return NULL
    if (T->rightChild == NULL)
    then return T
    else return findMax (T->rightChild)
}
```


- Complexity ? $\quad O(h)$

Printing BSTs

- In-order traversal ==> sorted

```
PrintTree (T)
{
    if (T == NULL)
    then return
    PrintTree (T->leftChild)
    cout << T->element
    PrintTree (T->rightChild)
}
```


123468

- Complexity? $\Theta_{(n)}$

Inserting into BSTs

- E.g., insert 5

Old tree:

Inserting into BSTs

. "Search" for element until reach end of tree; insert new element there

```
Insert (x, T)
{
    if (T == NULL)
    then T = new Node(x)
    else
    if (x < T->element)
    then if (T->leftChild == NULL)
        then T->leftchild = new Node(x)
        else Insert (x, T->leftChild)
    else if (T->rightChild == NULL)
        then (T->rightChild = new Node(x)
        else Insert (x, T->rightChild)
}
```


Removing from BSTs

There are two cases for removal

- Case 1: Node to remove has 0 or 1 child
- Action: Just remove it and make appropriate adjustments to retain BST structure

Node has no children
remove(4):

Removing from BSTs

- Case 2: Node to remove has 2 children
- Action:
- Replace node element with successor be used instead?
- Remove the successor (case 1)
- E.g.,remove(2):

Old tree:

Cpt S 223. School of EECS, WSU New tree:

Removing from BSTs

Implementation of BST

```
template <typename Comparable>
class BinarySearchTree
{
    public:
        BinarySearchTree( );
        BinarySearchTree( const BinarySearchTree & rhs );
        ~BinarySearchTree( );
        const Comparable & findMin( ) const;
        const Comparable & findMax( ) const;
        bool contains( const Comparable & x ) const;
        bool isEmpty( ) const;
        void printTree( ) const;
        void makeEmpty( );
        void insert( const Comparable & x );
        void remove( const Comparable & x );
        const BinarySearchTree & operator=( const BinarySearchTree & rhs );
```

private:
struct BinaryNode
\{
What's the difference between a struct and a class?
Comparable element;
BinaryNode *left;
BinaryNode *right;
BinaryNode(const Comparable \& theElement, BinaryNode *lt, BinaryNode *rt)
: element (theElement), left(lt), right(rt) \{ \}
\};
BinaryNode *root;

```
const?
```

 void insert(const Comparable \& x, BinaryNode * \& t) const;
 void remove(const Comparable \& x, BinaryNode * \& t) const;
 BinaryNode * findMin(BinaryNode *t) const;
 BinaryNode * findMax(BinaryNode *t) const;
 bool contains(const Comparable \& \(x\), BinaryNode *t) const;
 void makeEmpty (BinaryNode * \& t);
 void printTree(BinaryNode *t) const;
 BinaryNode * clone(BinaryNode *t) const;
 Pointer to tree node passed by reference so it can be reassigned within function.
\};

```
/**
```

/**
* Returns true if x is found in the tree.
* Returns true if x is found in the tree.
*/
*/
bool contains(const Comparable \& x) const
bool contains(const Comparable \& x) const
{
{
return contains(x, root);
return contains(x, root);
}
}
/**
/**
* Insert x into the tree; duplicates are ignored.
* Insert x into the tree; duplicates are ignored.
*/
*/
void insert(const Comparable \& x)
void insert(const Comparable \& x)
{
{
insert(x, root);
insert(x, root);
}
}
/**
/**
* Remove x from the tree. Nothing is done if x is not found.
* Remove x from the tree. Nothing is done if x is not found.
*/
*/
void remove(const Comparable \& x)
void remove(const Comparable \& x)
{
{
remove(x, root);
remove(x, root);
}

```
}
```

```
/**
```

/**
* Internal method to test if an item is in a subtree.
* Internal method to test if an item is in a subtree.
* x is item to search for.
* x is item to search for.
* t is the node that roots the subtree.
* t is the node that roots the subtree.
*/
*/
bool contains(const Comparable \& x, BinaryNode *t) const
bool contains(const Comparable \& x, BinaryNode *t) const
{
{
if(t == NULL)
if(t == NULL)
return false;
return false;
else if(x < t->element)
else if(x < t->element)
return contains(x, t->left);
return contains(x, t->left);
else if(t->element < x)
else if(t->element < x)
return contains(x, t->right);
return contains(x, t->right);
else
else
return true; // Match
return true; // Match
}

```
}
```



```
/**
```

/**
* Internal method to insert into a subtree.
* Internal method to insert into a subtree.
* x is the item to insert.
* x is the item to insert.
* t is the node that roots the subtree.
* t is the node that roots the subtree.
* Set the new root of the subtree.
* Set the new root of the subtree.
*/
*/
void insert(const Comparable \& x, BinaryNode * \& t)
void insert(const Comparable \& x, BinaryNode * \& t)
{
{
if(t == NULL)
if(t == NULL)
t = new BinaryNode(x, NULL, NULL);
t = new BinaryNode(x, NULL, NULL);
else if(x < t->element)
else if(x < t->element)
insert(x, t->left);
insert(x, t->left);
else if(t->element < x)
else if(t->element < x)
insert(x, t->right);
insert(x, t->right);
else
else
; // Duplicate; do nothing
; // Duplicate; do nothing
}

```
    }
```

```
/**
    * Internal method to remove from a subtree.
    * }x\mathrm{ is the item to remove.
    * t is the node that roots the subtree.
    * Set the new root of the subtree.
    */
    void remove( const Comparable & x, BinaryNode * & t )
    {
        if( t == NULL )
            return; // Item not found; do nothing
    if( x < t->element )
    remove( x, t->left );
    else if( t->element < x )
    remove( x, t->right );
    else if( t->left != NULL && t->right != NULL ) // Two children
    {
    t->element = findMin( t->right )->element;
                            Case 2:
    remove( t->element, t->right );
    }
        else
        {
            BinaryNode *oldNode = t;
                            Case 1: Just delete it
        t = ( t->left != NULL ) ? t->left : t->right;
        delete oldNode;
    }
    }


\section*{BST Analysis}
- printTree, makeEmpty and operator=
- Always \(\Theta(\mathrm{N})\)
- insert, remove, contains, findMin, findMax
- O(h), where \(h=\) height of tree
- Worst case: \(\mathrm{h}=\) ? \(\quad \Theta(\mathrm{N})\)

- Best case: \(h=\) ?
- Average case: h = ?


\section*{BST Average-Case Analysis}
- Define "Internal path length" of a tree:
= Sum of the depths of all nodes in the tree
- Implies: average depth of a tree = Internal path length/N
- But there are lots of trees possible (one for every unique insertion sequence)
- ==> Compute average internal path length over all possible insertion sequences
- Assume all insertion sequences are equally likely
- Result: \(\mathrm{O}\left(\mathrm{N} \log _{2} \mathrm{~N}\right)\)
- Thus, average depth \(=O(N \lg N) / N=O(\lg N)\)

\section*{Calculating Avg. Internal Path Length}
- Let \(D(N)=i n t\). path. len. for a tree with N nodes
\[
\begin{aligned}
& =D(\text { left })+D \text { (right })+D \text { (root }) \\
& =D(i)+i+D(N-i-1)+N-i-1+0 \\
& =D(i)+D(N-i-1)+N-1
\end{aligned}
\]
- If all tree sizes are equally likely,
\(=>\) avg. \(D(i)=\) avg. \(D(N-i-1)\)
\[
=1 / N \Sigma_{j=0}{ }^{N-1} D(j)
\]

\(\Rightarrow\) Avg. \(D(N)=2 / N \Sigma_{j=0}{ }^{N-1} D(j)+N-1\)
\(\Rightarrow \mathbf{O}(\mathrm{N} \lg \mathrm{N})\)

A similar analysis will be used in QuickSort

\section*{Randomly Generated 500-node BST (insert only)}


\section*{Previous BST after \(500^{2}\) Random Mixture of Insert/Remove Operations}


\section*{Balanced Binary Search Trees}

\section*{BST Average-Case Analysis}
- After randomly inserting N nodes into an empty BST
- Average depth \(=\mathrm{O}\left(\log _{2} \mathrm{~N}\right)\)
- After \(\Theta\left(\mathrm{N}^{2}\right)\) random insert/remove pairs into an N-node BST
- Average depth \(=\Theta\left(\mathrm{N}^{1 / 2}\right)\)
- Why?
- Solutions?
- Overcome problematic average cases?
- Overcome worst case?

\section*{Balanced BSTs}
- AVL trees
- Height of left and right subtrees at every node in BST differ by at most 1
- Balance forcefully maintained for every update (via rotations)
- BST depth always \(\mathrm{O}\left(\log _{2} \mathrm{~N}\right)\)

\section*{AVL Trees}
- AVL (Adelson-Velskii and Landis, 1962)
- Definition:

Every AVL tree is a BST such that:
1. For every node in the BST, the heights of its left and right subtrees differ by at most 1

\section*{AVL Trees}
- Worst-case Height of AVL tree is \(\Theta\left(\log _{2} N\right)\)
- Actually, \(1.44 \log _{2}(\mathrm{~N}+2)-1.328\)
- Intuitively, enforces that a tree is "sufficiently" populated before height is grown
- Minimum \#nodes \(S(h)\) in an AVL tree of height \(h\) :
- \(S(h)=S(h-1)+S(h-2)+1\)
- (Similar to Fibonacci recurrence)
- \(=\Theta\left(2^{\mathrm{h}}\right)\)

\section*{AVL Trees}

Note: height violation not allowed at ANY node

Which of these is a valid AVL tree?


This is an AVL tree


This is NOT an AVL tree

\section*{Maintaining Balance Condition}
- If we can maintain balance condition, then the insert, remove, find operations are \(\mathrm{O}(\lg \mathrm{N})\)
- How?
- \(N=\Omega\left(2^{h}\right)=>\quad h=O(\lg (N))\)
- Maintain height \(\mathrm{h}(\mathrm{t})\) at each node t
- \(\mathrm{h}(\mathrm{t})=\max \{\mathrm{h}(\mathrm{t}->\) left \(), \mathrm{h}(\mathrm{t}->\) right \()\}+1\)
- h(empty tree) \(=-1\)
- Which operations can upset balance condition?

\section*{AVL Insert}
- Insert can violate AVL balance condition - Can be fixed by a rotation


\section*{AVL Insert}

- Only nodes along path to insertion could have their balance altered
- Follow the path back to root, looking for violations
- Fix the deepest node with violation using single or double rotations
Q) Why is fixing the deepest node with violation sufficient?

\section*{AVL Insert - how to fix a node with height violation?}
- Assume the violation after insert is at node \(k\)
- Four cases leading to violation:
- CASE 1: Insert into the left subtree of the left child of \(k\)
- CASE 2: Insert into the right subtree of the left child of \(k\)
- CASE 3: Insert into the left subtree of the right child of \(k\)
- CASE 4: Insert into the right subtree of the right child of \(k\)
- Cases 1 and 4 handled by "single rotation"
- Cases 2 and 3 handled by "double rotation"

\section*{Identifying Cases for AVL \\ Insert}
\(\pm\)


Let this be the deepest node with the violation (i.e, imbalance) (i.e., nearest to the last insertion site)



Remember: \(X, Y, Z\) could be empty trees, or single node trees, or mulltiple node trees.

\section*{AVL Insert (single rotation)}

\section*{- Case 1: Single rotation right}

\[
\text { Invariant: } \quad X<k_{1}<Y<k_{2}<Z
\]

Cpt S 223. School of EECS, WSU

\section*{AVL Insert (single rotation)}
- Case 1 example


\section*{General approach for fixing violations after AVL tree insertions}
1. Locate the deepest node with the height imbalance
2. Locate which part of its subtree caused the imbalance
- This will be same as locating the subtree site of insertion
3. Identify the case (1 or 2 or 3 or 4 )
4. Do the corresponding rotation.

\section*{Case 4 for AVL insert}


Let this be the node with the violation (i.e, imbalance) (nearest to the last insertion site)


Cpt S 223. School of EECS, WSU

\section*{Case 4 == mirror case of Case 1}

\section*{AVL Insert (single rotation)}
- Case 4: Single rotation left

\[
\begin{array}{|r|}
\text { Invariant: } \\
\\
\text { Cpt S 223. School of EECS, WSU }
\end{array}
\]

\section*{AVL Insert (single rotation)}
- Case 4 example



Note: \(X, Z\) can be empty trees, or single node trees, or mulltiple node trees But \(Y\) should have at least one or more nodes in it because of insertion.

\section*{AVL Insert}
- Case 2: Single rotation fails


\section*{AVL Insert}
- Case 2: Left-right double rotation

\[
\text { Invariant: } A<k_{1}<B<k_{2}<C<k_{3}<D
\]
=> Make \(\mathrm{k}_{2}\) take \(\mathrm{k}_{3}\) 's place

\section*{AVL Insert (double rotation)}
- Case 2 example


Approach: push 3 to 5's place

\section*{Case 3 for AVL insert}


Let this be the node with the violation (i.e, imbalance) (nearest to the last insertion site)


\section*{AVL Insert}

\section*{- Case 3: Right-left double rotation}
\[
\begin{aligned}
& \text { Invariant: } A<\mathbf{k}_{1}<B<\mathbf{k}_{2}<C<\mathbf{k}_{3}<\mathrm{D} \\
& \text { Cpt S } 223 \text {. School of EECS, WSU }
\end{aligned}
\]

\section*{Exercise for AVL deletion/remove}


Cpt S 223. School of EECS, WSU

\section*{Alternative for AVL Remove (Lazy deletion)}
- Assume remove accomplished using lazy deletion
- Removed nodes only marked as deleted, but not actually removed from BST until some cutoff is reached
- Unmarked when same object re-inserted
- Re-allocation time avoided
- Does not affect \(\mathrm{O}\left(\log _{2} \mathrm{~N}\right)\) height as long as deleted nodes are not in the majority
- Does require additional memory per node
- Can accomplish remove without lazy deletion

\section*{AVL Tree Implementation}
```

1 struct Av1Node
2
3
4
5
6
7
{
Comparable element;
AvlNode *left;
AvlNode *right;
int height;
Av1Node(const Comparable \& theElement, Av1Node *lt,
Av1Node *rt, int h = 0)
: element(theElement), left(lt), right(rt), height(h)
};

```

\section*{AVL Tree Implementation}
```

4 int height(Av1Node *t) const
/**
* Return the height of node t or -1 if NULL.
*/
{
return t == NULL ? -1 : t->height;
}

```



1
1
2
2
3
3
4
4
5
5
6
6
    7 void doubleWithLeftChild( Av1Node * & k3 )
    7 void doubleWithLeftChild( Av1Node * & k3 )
8
8
9
9
10
10
11
11
/**
/**
* Double rotate binary tree node: first left child
* Double rotate binary tree node: first left child
    * with its right child; then node k3 with new left child.
    * For AVL trees, this is a double rotation for case 2.
    * For AVL trees, this is a double rotation for case 2.
    * Update heights, then set new root.
    * Update heights, then set new root.
    */
    */
    {
    {
        rotateWithRightChild( k3->left ); // #1
        rotateWithRightChild( k3->left ); // #1
        rotateWithLeftChild( k3 ); // #2
        rotateWithLeftChild( k3 ); // #2
    }
    }

\section*{Splay Tree}

\section*{Observation:}
- Height imbalance is a problem only if \& when the nodes in the deeper parts of the tree are accessed
Idea:
- Use a lazy strategy to fix height imbalance

\section*{Strategy:}
- After a node is accessed, push it to the root via AVL rotations
- Guarantees that any M consecutive operations on an empty tree will take at most \(\mathrm{O}\left(\mathrm{M} \log _{2} \mathrm{~N}\right)\) time
- Amortized cost per operation is \(\mathrm{O}\left(\log _{2} \mathrm{~N}\right)\)
- Still, some operations may take \(\mathrm{O}(\mathrm{N})\) time
- Does not require maintaining height or balance information

\section*{Splay Tree}
- Solution 1
- Perform single rotations with accessed/new node and parent until accessed/new node is the root
- Problem
- Pushes current root node deep into tree
- In general, can result in \(\mathrm{O}\left(\mathrm{M}^{*} \mathrm{~N}\right)\) time for M operations
- E.g., insert 1, 2, 3, ..., N

\section*{Splay Tree}
- Solution 2
- Still rotate tree on the path from the new/accessed node \(X\) to the root
- But, rotations are more selective based on node, parent and grandparent
- If \(X\) is child of root, then rotate \(X\) with root
- Otherwise, ...

\section*{Splaying: Zig-zag}
- Node X is right-child of parent, which is left-child of grandparent (or vice-versa)
- Perform double rotation (left, right)


\section*{Splaying: Zig-zig}
- Node X is left-child of parent, which is left-child of grandparent (or right-right)
- Perform double rotation (right-right)


\section*{Splay Tree}
- E.g., consider previous worst-case scenario: insert 1, 2, ..., N


\section*{Splay Tree: Remove}
- Access node to be removed (now at root)
- Remove node leaving two subtrees \(\mathrm{T}_{\mathrm{L}}\) and \(\mathrm{T}_{\mathrm{R}}\)
- Access largest element in \(\mathrm{T}_{\mathrm{L}}\)
- Now at root; no right child
- Make \(T_{R}\) right child of root of \(T_{L}\)

\section*{Balanced BSTs}
- AVL trees
- Guarantees \(\mathrm{O}\left(\log _{2} \mathrm{~N}\right)\) behavior
- Requires maintaining height information
- Splay trees
- Guarantees amortized \(O\left(\log _{2} \mathrm{~N}\right)\) behavior
- Moves frequently-accessed elements closer to root of tree
- Other self-balancing BSTs:
- Red-black tree (used in STL)
- Scapegoat tree
- Treap
- All these trees assume N -node tree can fit in main memory
- If not?

\title{
Balanced Binary Search Trees in STL: set and map
}
- vector and list STL classes inefficient for search
- STL set and map classes guarantee logarithmic insert, delete and search

\section*{STL set Class}
- STL set class is an ordered container that does not allow duplicates
- Like lists and vectors, sets provide iterators and related methods: begin, end, empty and size
- Sets also support insert, erase and find

\section*{Set Insertion}
- insert adds an item to the set and returns an iterator to it
- Because a set does not allow duplicates, insert may fail
- In this case, insert returns an iterator to the item causing the failure
- (if you want duplicates, use multiset)
- To distinguish between success and failure, insert actually returns a pair of results
- This pair structure consists of an iterator and a Boolean indicating success
pair<iterator, bool> insert (const Object \& x);

\section*{Sidebar: STL pair Class}
- pair<Type1,Type2>
- Methods: first, second, first_type, second_type
```

\#include <utility>
pair<iterator,bool> insert (const Object \& x)
{
iterator itr;
bool found;
..'
return pair<itr,found>;
}

```

\section*{Example code for set insert}
```

set<int> s;
//insert
for (int i = 0; i < 1000; i++){
s.insert(i);
}
//print
iterator<set<int>> it=s.begin();
for(it=s.begin(); it!=s.end();it++) {
cout << *it << " " << endl;
}

```

What order will the elements get printed?

Sorted order (iterator does an in-order traversal)

\section*{Example code for set insert}

Write another code to test the return condition of each insert:
```

set<int> s;
pair<iterator<set<int>>,bool> ret;
for (int i = 0; i < 1000000; i++){
ret = s.insert(i);
... ?
}

```

\section*{Set Insertion}
- Giving insert a hint
pair<iterator, bool> insert (iterator hint, const Object \& x);
- For good hints, insert is \(O(1)\)
- Otherwise, reverts to one-parameter insert
- E.g.,
```

set<int> s;
for (int i = 0; i < 1000000; i++)
s.insert (s.end(), i);

```

\section*{Set Deletion}
- int erase (const Object \& \(\underline{x}\) );
- Remove x, if found
- Return number of items deleted (0 or 1)
- iterator erase (iterator itr);
- Remove object at position given by iterator
- Return iterator for object after deleted object
- iterator erase (iterator start, iterator end);
- Remove objects from start up to (but not including) end
- Returns iterator for object after last deleted object
- Again, iterator advances from start to end using in-order traversal

\section*{Set Search}
- iterator find (const Object \& x) const;
- Returns iterator to object (or end() if not found)
- Unlike contains, which returns Boolean
- find runs in logarithmic time

\section*{STL map Class}
- Associative container
- Each item is 2-tuple: [ Key, Value]
- STL map class stores items sorted by Key
- set vs. map:
- The set class \(\equiv\) map where key is the whole record
- Keys must be unique (no duplicates)
- If you want duplicates, use mulitmap
- Different keys can map to the same value
- Key type and Value type can be totally different

\section*{STL set and map classes}

Each node in aSET is:


Each node in a MAP is:


\section*{STL map Class}
- Methods
- begin, end, size, empty
- insert, erase, find
- Iterators reference items of type pair<KeyType, ValueType>
- Inserted elements are also of type pair<KeyType, ValueType>

\section*{STL map Class}
- Main benefit: overloaded operator[]

ValueType \& operator[] (const KeyType \& key);
- If key is present in map
- Returns reference to corresponding value
- If key is not present in map
- Key is inserted into map with a default value
- Reference to default value is returned
```

map<string,double> salaries;
salaries["Pat"] = 75000.0;

```

\section*{Example}


\section*{Example (cont.)}
```

months["may"] = 31;
months["june"] = 30;

```
months["december"] = 31;
cout << "february -> " << months["february"] << endl;
map<const char*, int, ltstr>::iterator cur = months.find("june");
map<const char*, int, ltstr>::iterator prev = cur;
map<const char*, int, ltstr>::iterator next = cur;
++next; --prev;
cout << "Previous (in alphabetical order) is " << (*prev).first << endl;
cout << "Next (in alphabetical order) is " << (*next).first << endl;
months["february"] = 29;
cout << "february -> " << months["february"] << endl;
What will this
code do?

\section*{Implementation of set and map}
- Support insertion, deletion and search in worst-case logarithmic time
- Use balanced binary search tree (a red-black tree)
- Support for iterator
- Tree node points to its predecessor and successor
- Which traversal order?

\section*{When to use set and when to use map?}
- set
- Whenever your entire record structure to be used as the Key
- E.g., to maintain a searchable set of numbers
- map
- Whenever your record structure has fields other than Key
- E.g., employee record (search Key: ID, Value: all other info such as name, salary, etc.)

\title{
B-Trees
}

\section*{A Tree Data Structure for Disks}

\section*{Top 10 Largest Databases}
\begin{tabular}{|l|l|}
\hline Organization & Database Size \\
\hline WDCC & \(6,000 \mathrm{TBs}\) \\
\hline NERSC & \(2,800 \mathrm{TBs}\) \\
\hline AT\&T & 323 TBs \\
\hline Google & 33 trillion rows (91 million insertions per day) \\
\hline Sprint & 3 trillion rows (100 million insertions per day) \\
\hline ChoicePoint & 250 TBs \\
\hline Yahoo! & 100 TBs \\
\hline YouTube & 45 TBs \\
\hline Amazon & 42 TBs \\
\hline Library of Congress & 20 TBs \\
\hline
\end{tabular}

Source: www.businessintelligencelowdown.com, 2007.
Cpt S 223. School of EECS, WSU

\section*{How to count the bytes?}
- Kilo \(\approx \times 10^{3}\)
- Mega \(\approx \times 10^{6}\)
- Giga \(\approx \times 10^{9}\)

Current limit for single node storage
- Tera \(\approx \times 10^{12}\)
- Peta \(\approx \times 10^{15}\)
- Exa \(\approx \quad\) x \(10^{18}\)
- Zeta \(\approx\) x \(10^{21}\)


\section*{Primary storage vs. Disks}
\begin{tabular}{|c|c|c|}
\hline & Primary Storage & Secondary Storage \\
\hline Hardware & RAM (main memory), cache & Disk (ie., I/O) \\
\hline Storage capacity & >100 MB to 2-4GB & Giga (109) to Terabytes ( \(10^{12}\) ) to.. \\
\hline Data persistence & Transient (erased after process terminates) & Persistent (permanently stored) \\
\hline Data access speeds & \begin{tabular}{l}
~ a few clock cycles \\
(ie., \(\times 10^{-9}\) seconds)
\end{tabular} & \begin{tabular}{l}
milliseconds ( \(10^{-3}\) \(\mathrm{sec})=\) \\
Data seek time + \\
read time \({ }^{\text {could be million times }}\)
\end{tabular} \\
\hline
\end{tabular}

\section*{Use a balanced BST?}
- Google: 33 trillion items
- Indexed by ?
- IP, HTML page content
- Estimated access time (if we use a simple balanced BST):
- \(\mathrm{h}=\mathrm{O}\left(\log _{2} 33 \times 10^{12}\right) \cong 44.9\) disk accesses
- Assume 120 disk accesses per second ==> Each search takes 0.37 seconds

What happens if you do
- 1 disk access \(==>10^{6} \mathrm{CPU}\) instructions

\section*{Main idea: Height reduction}
- Why ?
- BST, AVL trees at best have heights O(lg n)
- \(\mathrm{N}=10^{6} \rightarrow \lg 10^{6}\) is roughly 20
- 20 disk seeks for each level would be too much!
- So reduce the height !
- How?
- Increase the log base beyond 2
- Eg., \(\log _{5} 10^{6}\) is < 9
- Instead of binary (2-ary) trees, use m-ary search trees s.t. \(\mathrm{m}>2\)

\section*{How to store an m-way tree?}
- Example: 3-way search tree
- Each node stores:
- \(\leq 2\) keys
- \(\leq 3\) children

- Height of a balanced 3-way search tree?


\section*{Bigger Idea}
- Use an M-way search tree
- Each node access brings in M-1 keys an M child pointers
- Choose M so node size = 1 disk block size
- Height of tree \(=\Theta\left(\log _{M} N\right)\)

Tree node structure:




- Standard disk block size \(=8192\) bytes
- Assume keys use 32 bytes, pointers use 4 bytes
- Keys uniquely identify data elements
- Space per node \(=32^{*}(\mathrm{M}-1)+4 * \mathrm{M}=8192\)
- \(M=228\)
- \(\log _{228} 33 \times 10^{12}=5.7\) (disk accesses)
- Each search takes 0.047 seconds

\section*{5-way tree of 31 nodes has only 3 levels}


Real Data Items stored at leaves
as disk blocks

\section*{BH trees: Definition}

A \(B+\) tree of order \(M\) is an \(M\)-way tree with all the following properties:
1. Leaves store the real data items
2. Internal nodes store up to M-1 keys
s.t., key \(i\) is the smallest key in subtree \(i+1\)
3. Root can have between 2 to \(M\) children
4. Each internal node (except root) has between ceil(M/2) to M children
5. All leaves are at the same depth
6. Each leaf has between ceil(L/2) and \(L\) data items, for some L

Parameters: \(\quad\) N, M, L

\section*{B+ tree of order 5}

- \(M=5\) (order of the \(B+\) tree)
- L=5 (\#data items bound for leaves)
- Each int. node (except root) has to have at least 3 children
- Each leaf has to have at least 3 data items

\section*{B+ tree of order 5}

- Data items stored at leaves
- Each leaf = 1 disk block

\section*{Example: Find (81) ?}

- O( \(\log _{M}\) \#leaves) disk block reads
- Within the leaf: \(\mathrm{O}(\mathrm{L})\)
- or even better, \(O(\log L)\) if data items are kept sorted

\section*{How to design a B+ tree?}
- How to find the \#children per node?
\[
\text { i.e., } M=\text { ? }
\]
- How to find the \#data items per leaf?
\[
\text { i.e., } L=\text { ? }
\]

\section*{Node Data Structures}
- Root \& internal nodes
- M child pointers
- 4 x M bytes
- M-1 key entries
- (M-1) x K bytes
- Leaf node
- Let L be the max number of data items per leaf
- Storage needed per leaf:
- Lx D bytes
- D denotes the size of each data item
- K denotes the size of a key (ie., \(\mathrm{K}<=\mathrm{D}\) )

\section*{How to choose \(M\) and \(L\) ?}

M \& L are chosen based on:
1. Disk block size (B)
2. Data element size (D)
3. Key size (K)

\section*{Calculating M: threshold for internal node capacity}
- Each internal node needs
- \(4 \times \mathrm{M}+(\mathrm{M}-1) \times \mathrm{K}\) bytes
- Each internal node has to fit inside a disk block
- ==> \(\quad B=4 M+(M-1) K\)
- Solving the above:
- M = floor[ (B+K) / (4+K) ]
- Example: For \(\mathrm{K}=4, \mathrm{~B}=8 \mathrm{~KB}\) :
- M = 1,024

\section*{Calculating L: threshold for leaf capacity \\ - L = floor[ B / D ]}
- Example: For D=4, B = 8 KB :
- L = 2,048
- ie., each leaf has to store 1,024 to 2,048 data items

\title{
How to use a B+ tree?
}

\author{
-Find \\ -Insert \\ -Delete
}

\section*{Example: Find (81) ?}

- O( \(\log _{\mathrm{M}}\) \#leaves) disk block reads
- Within each internal node:
- \(\mathrm{O}(\lg \mathrm{M})\) assuming binary search
- Within the leaf:


\section*{B+ trees: Other Counters}
- Let N be the total number of data items
- How many leaves in the tree?

- = between ceil [ N / L ] and ceil [ \(2 \mathrm{~N} / \mathrm{L}\) ]
- What is the tree height? - = O ( \(\log _{\mathrm{M}}\) \#leaves)

\section*{B+ tree: Insertion}
- Ends up maintaining all leaves at the same level before and after insertion
- This could mean increasing the height of the tree

\section*{Example: Insert (57) before}


Insert here, there is space!

\section*{Example: Insert (57) after}


No more room

Next: Insert(55)
(m) So, split the previous leaf into 2 parts

\section*{Example.. Insert (55) after}


\section*{Example.. Insert (40) after}


Note: Splitting the root itself would mean we are increasing the height by 1

\section*{Example.. Delete (99) before}


\section*{Example.. Delete (99) after}


\section*{Summary: Trees}
- Trees are ubiquitous in software
- Search trees important for fast search
- Support logarithmic searches
- Must be kept balanced (AVL, Splay, B-tree)
- STL set and map classes use balanced trees to support logarithmic insert, delete and search
- Implementation uses top-down red-black trees (not AVL) - Chapter 12 in the book
- Search tree for Disks
- B+ tree```

