
TreesTrees

1111111Cpt S 223. School of EECS, WSU

Overview

 Tree data structure
 Binary search trees Binary search trees

 Support O(log2 N) operations
Balanced trees Balanced trees

 STL set and map classes
 B-trees for accessing secondary storage
 Applications

222222

pp

Cpt S 223. School of EECS, WSU

Trees
G is parent of N
and child of A

M is child of F and
grandchild of A

A is an ancestor of P
P is a descendant of A

Generic
Tree:

3333Cpt S 223. School of EECS, WSU

Definitions
 A tree T is a set of nodes that form a directed acyclic

graph (DAG) such that:
E h t t h t d d b Each non-empty tree has a root node and zero or more sub-
trees T1, …, Tk

 Each sub-tree is a tree
Recursive definition

 An internal node is connected to its children by a directed
edge

 Each node in a tree has only one parent
 Except the root, which has no parent

4444Cpt S 223. School of EECS, WSU

Definitions
 Nodes with at least one child is an internal node
 Nodes with no children are leaves

“Nodes” = Either a leaf or an internal node Nodes = Either a leaf or an internal node
 Nodes with the same parent are siblings
 A path from node n1 to nk is a sequence of nodes n1, n2, …, nk

h th t i th t f f 1 ≤ i ksuch that ni is the parent of ni+1 for 1 ≤ i < k
 The length of a path is the number of edges on the path (i.e., k-1)
 Each node has a path of length 0 to itself
 There is exactly one path from the root to each node in a tree
 Nodes ni,…,nk are descendants of ni and ancestors of nk

 Nodes ni+1,…, nk are proper descendants

555

 Nodes ni,…,nk-1 are proper ancestors of ni

5Cpt S 223. School of EECS, WSU

Definitions: node relationships

B,C,D,E,F,G are siblings

B,C,H,I,P,Q,K,L,M,N are leaves
K,L,M are siblings

The path from A to Q is A E J Q (with length 3)The path from A to Q is A – E – J – Q (with length 3)
A,E,J are proper ancestors of Q
E,J,Q, I,P are proper descendants of A

6666Cpt S 223. School of EECS, WSU

Definitions: Depth, Height

 The depth of a node ni is the length of the
path from the root to ni

 The root node has a depth of 0
 The depth of a tree is the depth of its deepest leaf

The height of a node n is the length of the

Can there be
more than one?

 The height of a node ni is the length of the
longest path under ni’s subtree
 All leaves have a height of 0 All leaves have a height of 0

 height of tree = height of root = depth
of tree

7

of tree
Cpt S 223. School of EECS, WSU

Trees

Height of each node? e g height(E)=2 height(L)=0Height of each node?
Height of tree?
Depth of each node?
Depth of tree?

e.g., height(E)=2, height(L)=0

= 3 (height of longest path from root)

e.g., depth(E)=1, depth(L)=2

8888

e.g., depth(E) 1, depth(L) 2

= 3 (length of the path to the deepest node)

Cpt S 223. School of EECS, WSU

Implementation of Trees

 Solution 1: Vector of children
Struct TreeNode Direct access to children[i]
{
Object element;
vector<TreeNode> children;

}

but…
Need to know
max allowed
children in advance

 Solution 2: List of children

} children in advance
& more space

Struct TreeNode
{
Object element;

Number of children
can be dynamically
determined but….

i

9999

list<TreeNode> children;
}

Cpt S 223. School of EECS, WSU

more time to
access children

Also called “First-child, next-sibling”

Implementation of Trees

 Solution 3: Left-child, right-sibling
Struct TreeNode Guarantees 2 pointers per node
{
Object element;
TreeNode *firstChild;
TreeNode *nextSibling;

Guarantees 2 pointers per node
(independent of #children)

But…
TreeNode *nextSibling;

} Access time proportional to #children

10101010Cpt S 223. School of EECS, WSU

Binary Trees (aka. 2-way trees)

 A binary tree is a tree where each node
has no more than two children.has no more than two children.

struct BinaryTreeNode
{
Object element;Object element;
BinaryTreeNode *leftChild;
BinaryTreeNode *rightChild;

}

 If a node is missing one or both
children, then that child pointer is NULL

11111111Cpt S 223. School of EECS, WSU

Example: Expression Trees
 Store expressions in a binary tree

 Leaves of tree are operands (e.g., constants, variables)
Oth i t l d bi t Other internal nodes are unary or binary operators

 Used by compilers to parse and evaluate expressions
 Arithmetic, logic, etc.e c, og c, e c

 E.g., (a + b * c)+((d * e + f) * g)

12121212Cpt S 223. School of EECS, WSU

Example: Expression Trees

 Evaluate expression
 Recursively evaluate left and right subtrees Recursively evaluate left and right subtrees
 Apply operator at root node to results from

subtreessubtrees

 Traversals (recursive definitions)
Post order: left right root Post-order: left, right, root

 Pre-order: root, left, right
In order: left root right

131313

 In-order: left, root, right

13Cpt S 223. School of EECS, WSU

Traversals for tree rooted
under an arbitrary “node”

 Pre-order: node - left - right
 Post-order: left - right - node
 In-order: left - node - right

14141414

In order: left node right

Cpt S 223. School of EECS, WSU

Traversals

 Pre-order: + + a * b c * + * d e f g
 Post-order: a b c * + d e * f + g * +
 In-order: a + b * c + d * e + f * g

15151515

In order: a + b c + d e + f g

Cpt S 223. School of EECS, WSU

Example: Expression Trees

 Constructing an expression tree from postfix
notation
 Use a stack of pointers to trees
 Read postfix expression left to right
 If operand, then push on stack
 If operator, then:

Create a BinaryTreeNode with operator as the element Create a BinaryTreeNode with operator as the element
 Pop top two items off stack
 Insert these items as left and right child of new node

161616

 Push pointer to node on the stack

16Cpt S 223. School of EECS, WSU

Example: Expression Trees

 E.g., a b + c d e + * *
(1) (3)

top top

a b

(1) (3)

+ edc

stack

a b

(2)

a b
top

(4)
top

b

()

+

()

+

d

c +

17171717

a b a b ed

Cpt S 223. School of EECS, WSU

Example: Expression Trees

 E.g., a b + c d e + * *
t top

(5)
top

*

(6)
top

*

a b

+

d

c +

*

a b

+

c +

*

ed a b

ed

18181818Cpt S 223. School of EECS, WSU

Binary Search Trees
 “Binary search tree (BST)”

 For any node n, items in left subtree of n
≤ item in node n
≤ items in right subtree of n

19191919
Which one is a BST and which one is not?

Cpt S 223. School of EECS, WSU

Searching in BSTs

C t i (T)Contains (T, x)
{
if (T == NULL)
then return NULL
if (T->element == x)
then return T
if (x < T->element)
then return Contains (T >leftChild x)then return Contains (T->leftChild, x)
else return Contains (T->rightChild, x)

}

20202020

Typically assume no duplicate elements.
If duplicates, then store counts in nodes, or
each node has a list of objects. Cpt S 223. School of EECS, WSU

Searching in BSTs

 Time to search using a BST with N
nodes is O(?)nodes is O(?)
 For a BST of height h, it is O(h)

 And, h = O(N) worst-case
1

2
1

2

3

4

6

8

 If the tree is balanced,
then h=O(lg N)

3

4

6

1 3 6

21212121Cpt S 223. School of EECS, WSU

6

8

Searching in BSTs

 Finding the minimum element
 Smallest element in left subtree Smallest element in left subtree

findMin (T)
{
if (T == NULL)
then return NULL
if (T->leftChild == NULL)
then return T

C l it ?

then return T
else return findMin (T->leftChild)

}

222222

 Complexity ?
22Cpt S 223. School of EECS, WSU

O(h)

Searching in BSTs

 Finding the maximum element
 Largest element in right subtree Largest element in right subtree

findMax (T)
{
if (T == NULL)
then return NULL
if (T->rightChild == NULL)
then return T

C l it ?

else return findMax (T->rightChild)
}

232323

 Complexity ?
23Cpt S 223. School of EECS, WSU

O(h)

Printing BSTs

 In-order traversal ==> sorted
PrintTree (T)PrintTree (T)
{
if (T == NULL)
then return
PrintTree (T->leftChild)
cout << T->element
PrintTree (T->rightChild)

}

 Complexity?

}

1 2 3 4 6 8

(n)

242424

 Complexity?

24Cpt S 223. School of EECS, WSU

(n)

Inserting into BSTs

 E.g., insert 5
(1)Old t (1)

(2)

Old tree: New tree:

insert(5)

(3)

(4)

25252525Cpt S 223. School of EECS, WSU

Inserting into BSTs

 “Search” for element until reach end of
tree; insert new element theretree; insert new element there

Insert (x, T)
{
if (T == NULL) Complexity?if (T == NULL)
then T = new Node(x)
else

if (x < T->element)

Complexity?

then if (T->leftChild == NULL)
then T->leftChild = new Node(x)
else Insert (x, T->leftChild)

else if (T->rightChild == NULL)

26262626

else if (T >rightChild NULL)
then (T->rightChild = new Node(x)
else Insert (x, T->rightChild)

}

Removing from BSTs

There are two cases for removal
 Case 1: Node to remove has 0 or 1 child

 Action: Just remove it and make appropriate
adjustments to retain BST structure

 E.g., remove(4): remove(4):
(1)

(2)

6
(1)

(2) (2)

(3)

2 8

1 4

(2)

(3)

2727
Node has no children

Node has 1 child

Removing from BSTs

 Case 2: Node to remove has 2 children
 Action:

Can the predecessor
 Replace node element with successor
 Remove the successor (case 1)

 E g remove(2): (1)

Can the predecessor
be used instead?

 E.g.,remove(2): (1)

(2)

Old tree:
Becomes

1 h

28282828

Old tree:

New tree:

case 1 here

Cpt S 223. School of EECS, WSU

Removing from BSTs
Remove (x, T)
{
if (T == NULL)
then return
if (T > l t)

Complexity?

if (x == T->element)
then if ((T->left == NULL) && (T->right != NULL))

then T = T->right
else if ((T->right == NULL) && (T->left != NULL))

then T = T->leftCASE 1 then T T >left
else if ((T->right == NULL) && (T->left == NULL))

then T = NULL
else {

successor = findMin (T->right)

CASE 1

CASE 2 T->element = successor->element
Remove (T->element, T->right)

}
else if (x < T->element)

//

CASE 2

29292929

then Remove (x, T->left) // recursively search
else Remove (x, T->right) // recursively search

}
Cpt S 223. School of EECS, WSU

Implementation of BST

30303030Cpt S 223. School of EECS, WSU

What’s the difference between
a struct and a class?

const ?

Pointer to tree
node passed by
reference so it
can be
reassigned
within function.

31313131Cpt S 223. School of EECS, WSU

Public memberPublic member
functions calling
private recursive
member functions.

32323232Cpt S 223. School of EECS, WSU

33333333Cpt S 223. School of EECS, WSU

34343434Cpt S 223. School of EECS, WSU

35353535Cpt S 223. School of EECS, WSU

Case 2:
Copy successor data
Delete successorDelete successor

Case 1: Just delete it

36363636Cpt S 223. School of EECS, WSU

Post-order traversal

37373737

Can pre-order be used here?

Cpt S 223. School of EECS, WSU

BST Analysis
 printTree, makeEmpty and operator=

 Always (N)
 insert, remove, contains, findMin,
findMax
 O(h), where h = height of tree

 Worst case: h = ? (N)

 Best case: h = ?
 Average case: h = ?

(lg N)

(l N)

383838

(lg N)

Cpt S 223. School of EECS, WSU

BST Average-Case Analysis
 Define “Internal path length” of a tree:

= Sum of the depths of all nodes in the tree
Implies: average depth of a tree Internal path length/N Implies: average depth of a tree = Internal path length/N

 But there are lots of trees possible (one for
every unique insertion sequence)y q q)
 ==> Compute average internal path length over

all possible insertion sequences
Assume all insertion sequences are equally likely Assume all insertion sequences are equally likely

 Result: O(N log2 N)
 Thus, average depth = O(N lg N) / N = O(lg N)

HOW?

393939

, g p (g) / (g)

Cpt S 223. School of EECS, WSU

Calculating Avg. Internal Path
Length

 Let D(N) = int. path. len. for a tree
with N nodes D(N)
= D(left) + D(right) + D(root)
= D(i) + i + D(N-i-1) + N-i-1 + 0
= D(i) + D(N-i-1) + N-1 D(i) D(N-i-1)

+1 +1(adjustment)

() ()

 If all tree sizes are equally likely,
=>avg. D(i) = avg. D(N-i-1)

1/N ∑ N-1D(j)

()

= 1/N ∑j=0
N-1D(j)

 Avg. D(N) = 2/N ∑j=0
N-1D(j) + N-1

A i il l i ill b

40

 O(N lg N) A similar analysis will be
used in QuickSort

Cpt S 223. School of EECS, WSU

Randomly Generated
500-node BST (insert only)

Average node depth = 9.98
log2 500 = 8.97

414141Cpt S 223. School of EECS, WSU

Previous BST after 5002 RandomPrevious BST after 500 Random
Mixture of Insert/Remove Operations

Average node depth = 12.51
log2 500 = 8 97log2 500 8.97

424242

Starting to become unbalanced….
need balancing!

Cpt S 223. School of EECS, WSU

B l d Bi S h TBalanced Binary Search Trees

43Cpt S 223. School of EECS, WSU

BST Average-Case Analysis
 After randomly inserting N nodes into an

empty BST
Average depth = O(log N) Average depth = O(log2 N)

 After Θ(N2) random insert/remove pairs into
an N-node BST
 Average depth = Θ(N1/2)

 Why?
 Solutions? Solutions?

 Overcome problematic average cases?
 Overcome worst case?

444444Cpt S 223. School of EECS, WSU

Balanced BSTs
 AVL trees

 Height of left and right subtrees at every node in
BST diff b t t 1BST differ by at most 1

 Balance forcefully maintained for every update
(via rotations)

 BST depth always O(log2 N)

454545Cpt S 223. School of EECS, WSU

AVL Trees
 AVL (Adelson-Velskii and Landis, 1962)

 Definition:

E AVL i BST h hEvery AVL tree is a BST such that:
1. For every node in the BST, the heights of its left

and right subtrees differ by at most 1and right subtrees differ by at most 1

464646Cpt S 223. School of EECS, WSU

AVL Trees
 Worst-case Height of AVL tree is (log2 N)

 Actually, 1.44 log2(N+2) – 1.328

 Intuitively enforces that a tree is Intuitively, enforces that a tree is
“sufficiently” populated before height is
grown

Minimum #nodes S(h) in an AVL tree of height h : Minimum #nodes S(h) in an AVL tree of height h :
 S(h) = S(h-1) + S(h-2) + 1

 (Similar to Fibonacci recurrence)
 = (2h)

474747Cpt S 223. School of EECS, WSU

Note: height violation not allowed

AVL Trees
Note: height violation not allowed

at ANY node

x
Which of these is a valid AVL tree?

h=1
h=2

h=0

h=2 h=2

This is an AVL tree

484848

This is an AVL tree This is NOT an AVL tree

Cpt S 223. School of EECS, WSU

Maintaining Balance Condition

 If we can maintain balance condition,
then the insert, remove, find operations p
are O(lg N)
 How?

 N = (2h) => h = O(lg(N))

 Maintain height h(t) at each node t
f h(t) = max {h(t->left), h(t->right)} + 1

 h(empty tree) = -1

Which operations can upset balance
494949

 Which operations can upset balance
condition?

Cpt S 223. School of EECS, WSU

AVL Insert

 Insert can violate AVL balance condition
 Can be fixed by a rotation Can be fixed by a rotation

Insert(6):

violation

()
balanced

Rotating 7-8
restores balance

505050
Inserting 6 violates AVL
balance condition

AVL Insert
 Only nodes along path to

insertion could have their balance
lt d

root

s

Fix at the
violoated

altered
 Follow the path back to root,

looking for violationsfo
r v

io
la

tio
ns

x
node

looking for violations
 Fix the deepest node with

violation using single or double

C
he

ck

g g
rotationsinserted

node

515151

Q) Why is fixing the deepest node with violation sufficient?

Cpt S 223. School of EECS, WSU

AVL Insert – how to fix a node
with height violation?
 Assume the violation after insert is at node k
 Four cases leading to violation:

 CASE 1 Inse t into the left s bt ee of the left child of k CASE 1: Insert into the left subtree of the left child of k
 CASE 2: Insert into the right subtree of the left child of k
 CASE 3: Insert into the left subtree of the right child of k

CASE 4 I t i t th i ht bt f th i ht hild f k CASE 4: Insert into the right subtree of the right child of k
 Cases 1 and 4 handled by “single rotation”
 Cases 2 and 3 handled by “double rotation”y

525252Cpt S 223. School of EECS, WSU

Identifying Cases for AVL
Insert

Let this be the deepest node with the
violation (i.e, imbalance)

k

()
(i.e., nearest to the last insertion site)

right childleft child

e

CASE 1 CASE 2 CASE 3 CASE 4le
ft

su
bt

re
e

le
ft

su
bt

re
e

rig
ht

su

bt
re

e

rig
ht

su

bt
re

e

53
Insert Insert Insert Insert

Cpt S 223. School of EECS, WSU

fCase 1 for AVL insert
Let this be the node with the
violation (i.e, imbalance)()

(nearest to the last insertion
site)

CASE 1

54
Insert

Cpt S 223. School of EECS, WSU

Remember: X, Y, Z could be empty trees, or single node trees, or mulltiple node trees.

AVL Insert (single rotation)

 Case 1: Single rotation right
ImbalanceBefore: After: BalancedImbalanceBefore: After: Balanced

AVL balance condition okay?
BST order okay?inserted

555555
Invariant: X < k1 < Y < k2 < Z

Cpt S 223. School of EECS, WSU

AVL Insert (single rotation)

 Case 1 example
Before: After:

Imbalance

Before: After:

Balanced

565656

inserted

Cpt S 223. School of EECS, WSU

General approach for fixing violationsGeneral approach for fixing violations
after AVL tree insertions

1. Locate the deepest node with the
height imbalanceg

2. Locate which part of its subtree
caused the imbalance
 This will be same as locating the subtree

site of insertion
3. Identify the case (1 or 2 or 3 or 4)
4. Do the corresponding rotation.

57Cpt S 223. School of EECS, WSU

fCase 4 for AVL insert
Let this be the node with the
violation (i.e, imbalance)()

(nearest to the last insertion
site)

CASE 4

58
Insert

Cpt S 223. School of EECS, WSU

Case 4 == mirror case of Case 1

AVL Insert (single rotation)

 Case 4: Single rotation left
I b lBefore: After: BalancedImbalanceBefore: After: Balanced

AVL balance condition okay?
BST order okay?

inserted

595959
Invariant: X < k1 < Y < k2 < Z

Cpt S 223. School of EECS, WSU

AVL Insert (single rotation)

 Case 4 example
Imbalance

Automatically fixed

Imbalance
4

4

2 6

Imbalance

Fix this

will this be true always?

balanced

2 5
2 6

75

Fix this
node

6

7

75

606060

inserted
7

Cpt S 223. School of EECS, WSU

fCase 2 for AVL insert
Let this be the node with the
violation (i.e, imbalance)()

(nearest to the last insertion
site)

CASE 2

61Insert Cpt S 223. School of EECS, WSU

Note: X, Z can be empty trees, or single node trees, or mulltiple node trees
But Y should have at least one or more nodes in it because of insertion.

AVL Insert

 Case 2: Single rotation fails
Before: After:Imbalance Imbalance

remains!

Before: After:

inserted Single rotation does not fix

626262
Think of Y as =

Single rotation does not fix
the imbalance!

AVL Insert

 Case 2: Left-right double rotation
Balanced!Before: After:Imbalance

#2

Balanced!Before: After:

#1

#2

X

=Z

AVL balance condition okay?
BST order okay?

inserted

=X

=Y

636363

Invariant: A < k1 < B < k2 < C < k3 < D

=> Make k2 take k3’s place
Can be implemented as
two successive single rotations

AVL Insert (double rotation)

 Case 2 example
Imbalance

Balanced!

Imbalance

5 3

#2

5

3 6
2 6

1 #1

2 5

41 6

3 6

42
3

4

1 #1 41 6

1

646464
inserted

4

Approach: push 3 to 5’s place

fCase 3 for AVL insert
Let this be the node with the
violation (i.e, imbalance)()

(nearest to the last insertion
site)

CASE 3

65
Insert

Cpt S 223. School of EECS, WSU

Case 3 == mirror case of Case 2

AVL Insert

 Case 3: Right-left double rotation

imbalance
Balanced!

#1

#2

AVL balance condition okay?
BST order okay?inserted

666666
Invariant: A < k1 < B < k2 < C < k3 < D

Cpt S 223. School of EECS, WSU

Exercise for AVL deletion/remove

10
Delete(2): ?

imbalance

Fix (by case 4)

7 15
Q) How much time will it take

to identify the case?

5 8 13 19

2 11 14 17 25

67

16 18

Cpt S 223. School of EECS, WSU

Alternative for AVL Remove
(Lazy deletion)
 Assume remove accomplished using lazy

deletion
Removed nodes only marked as deleted but not Removed nodes only marked as deleted, but not
actually removed from BST until some cutoff is
reached

 Unmarked when same object re-inserted Unmarked when same object re-inserted
 Re-allocation time avoided

 Does not affect O(log2 N) height as long as
deleted nodes are not in the majoritydeleted nodes are not in the majority

 Does require additional memory per node
 Can accomplish remove without lazy deletion

686868Cpt S 223. School of EECS, WSU

AVL Tree Implementation

696969Cpt S 223. School of EECS, WSU

AVL Tree Implementation

707070Cpt S 223. School of EECS, WSU

Q) Is it guaranteed
that the deepest
node with
imbalance is the

Insert first,
and then fix

one that gets
fixed?

A) Yes, recursion
will ensure that.

Case 1

Case 2

Locate insertion site
relative to the
imbalanced node
(if any)

Case 2

Case 4

Case 3

717171

Case 3

Cpt S 223. School of EECS, WSU

727272
Similarly, write rotateWithRightChild() for case 4

Cpt S 223. School of EECS, WSU

#2

#1

#2

// #1
// #2

737373

// #2

Cpt S 223. School of EECS, WSU

Splay Tree
Observation:

 Height imbalance is a problem only if & when the nodes in the
deeper parts of the tree are accessed

Idea:Idea:
 Use a lazy strategy to fix height imbalance

Strategy:Strategy:
 After a node is accessed, push it to the root via AVL rotations
 Guarantees that any M consecutive operations on an empty tree

will take at most O(M log2 N) time
Amortized cost per operation is O(log N) Amortized cost per operation is O(log2 N)

 Still, some operations may take O(N) time
 Does not require maintaining height or balance information

747474Cpt S 223. School of EECS, WSU

Splay Tree

 Solution 1
 Perform single rotations with accessed/new g /

node and parent until accessed/new node
is the root
P bl Problem
 Pushes current root node deep into tree
 In general can result in O(M*N) time for M In general, can result in O(M N) time for M

operations
 E.g., insert 1, 2, 3, …, N

757575Cpt S 223. School of EECS, WSU

Splay Tree

 Solution 2
 Still rotate tree on the path from the Still rotate tree on the path from the

new/accessed node X to the root
 But, rotations are more selective based onBut, rotations are more selective based on

node, parent and grandparent
 If X is child of root, then rotate X with root,
 Otherwise, …

767676Cpt S 223. School of EECS, WSU

Splaying: Zig-zag

 Node X is right-child of parent, which is
left-child of grandparent (or vice-versa)left child of grandparent (or vice versa)

 Perform double rotation (left, right)

777777Cpt S 223. School of EECS, WSU

Splaying: Zig-zig

 Node X is left-child of parent, which is
left-child of grandparent (or right-right)left child of grandparent (or right right)

 Perform double rotation (right-right)

787878Cpt S 223. School of EECS, WSU

Splay Tree

 E.g., consider previous worst-case
scenario: insert 1, 2, …, Nscenario: insert 1, 2, …, N

797979Cpt S 223. School of EECS, WSU

Splay Tree: Remove

 Access node to be removed (now at
root)root)

 Remove node leaving two subtrees TL
and Tand TR

 Access largest element in TL
N t t i ht hild Now at root; no right child

 Make TR right child of root of TL

808080Cpt S 223. School of EECS, WSU

Balanced BSTs
 AVL trees

 Guarantees O(log2 N) behavior
 Requires maintaining height information

S l t Splay trees
 Guarantees amortized O(log2 N) behavior
 Moves frequently-accessed elements closer to root of tree

 Other self-balancing BSTs: Other self balancing BSTs:
 Red-black tree (used in STL)
 Scapegoat tree
 Treap

 All these trees assume N-node tree can fit in main memory
 If not?

818181Cpt S 223. School of EECS, WSU

Balanced Binary Search Trees
in STL: set and map

 vector and list STL classes
inefficient for searchinefficient for search

 STL set and map classes guarantee
l h d l d hlogarithmic insert, delete and search

828282Cpt S 223. School of EECS, WSU

STL set Class

 STL set class is an ordered container
that does not allow duplicatesthat does not allow duplicates

 Like lists and vectors, sets provide
iterators and related methods: beginiterators and related methods: begin,
end, empty and size
Sets also support insert erase and Sets also support insert, erase and
find

838383Cpt S 223. School of EECS, WSU

Set Insertion
insert adds an item to the set and returns an iterator to it insert adds an item to the set and returns an iterator to it

 Because a set does not allow duplicates, insert may fail
 In this case, insert returns an iterator to the item causing

the failure
 (if you want duplicates, use multiset)

 To distinguish between success and failure, insert actually
returns a pair of resultsp
 This pair structure consists of an iterator and a Boolean

indicating success

848484

pair<iterator,bool> insert (const Object & x);

Cpt S 223. School of EECS, WSU

Sidebar: STL pair Class

 pair<Type1,Type2>
 Methods: first second Methods: first, second,
first_type, second_type

##include <utility>

pair<iterator,bool> insert (const Object & x)
{{
iterator itr;
bool found;
…
t i <it f d>

8585

return pair<itr,found>;
}

Cpt S 223. School of EECS, WSU

Example code for set insert
set<int> s;
//insert
for (int i = 0; i < 1000; i++){
s.insert(i);

}

//print

What order will the
elements get printed?

//print
iterator<set<int>> it=s.begin();
for(it=s.begin(); it!=s.end();it++) {

cout << *it << “ “ << endl;
}

Sorted order
(iterator does an

in-order traversal)} in order traversal)

Cpt S 223. School of EECS, WSU 86

Example code for set insert

Write another code to test the return condition of each insert:

set<int> s;
pair<iterator<set<int>>,bool> ret;
for (int i = 0; i < 1000000; i++){
ret = s insert(i);ret s.insert(i);
… ?

}

Cpt S 223. School of EECS, WSU 87

Set Insertion

 Giving insert a hint
pair<iterator bool> insert (iterator hint const Object & x);

 For good hints, insert is O(1)
h

pair<iterator,bool> insert (iterator hint, const Object & x);

 Otherwise, reverts to one-parameter
insert

 E.g., set<int> s;
for (int i = 0; i < 1000000; i++)
s.insert (s.end(), i);

888888Cpt S 223. School of EECS, WSU

Set Deletion
 int erase (const Object & x);

 Remove x, if found
Return number of items deleted (0 or 1) Return number of items deleted (0 or 1)

 iterator erase (iterator itr);

 Remove object at position given by iterator
 Return iterator for object after deleted object

 iterator erase (iterator start, iterator end);

 Remove objects from start up to (but not including) endj p (g)
 Returns iterator for object after last deleted object
 Again, iterator advances from start to end
using in-order traversal

8989

using in order traversal

89Cpt S 223. School of EECS, WSU

Set Search
 iterator find (const Object & x) const;

 Returns iterator to object (or end() if not found)
 Unlike contains, which returns Boolean

 find runs in logarithmic time

909090Cpt S 223. School of EECS, WSU

STL map Class

 Associative container
 Each item is 2-tuple: [Key, Value]

 STL map class stores items sorted by Key
 set vs. map:

Th l h k i th h l The set class map where key is the whole
record

 Keys must be unique (no duplicates) Keys must be unique (no duplicates)
 If you want duplicates, use mulitmap

 Different keys can map to the same value

9191

 Key type and Value type can be totally
different Cpt S 223. School of EECS, WSU

STL set and map classes

Each node in aSET is: Each node in a MAP is:

key
(as well as

Key

the value)
Value

(can be a
struct by

< >

y
itself)< >

Cpt S 223. School of EECS, WSU 92

STL map Class

 Methods
 begin, end, size, empty
 insert, erase, find

 Iterators reference items of type
pair<KeyType ValueType>pair<KeyType,ValueType>

 Inserted elements are also of type
pair<KeyType,ValueType>p y yp , yp

9393Cpt S 223. School of EECS, WSU

Syntax: MapObject[key] returns value

STL map Class

 Main benefit: overloaded operator[]
ValueType & operator[] (const KeyType & key);

 If key is present in map
 Returns reference to corresponding valuep g

 If key is not present in map
 Key is inserted into map with a default valuey p
 Reference to default value is returned

map<string,double> salaries;

9494

salaries[“Pat”] = 75000.0;

Cpt S 223. School of EECS, WSU

Example
struct ltstr
{
bool operator()(const char* s1, const char* s2) const
{{

return strcmp(s1, s2) < 0;
}

};
Comparator if
Key type not

primitiveKey type Value type
int main()
{
map<const char*, int, ltstr> months;
months["january"] = 31;

primitiveKey type yp

months[january] = 31;
months["february"] = 28;
months["march"] = 31;
months["april"] = 30;

• You really don’t have to call
insert() explicitly.

• This syntax will do it for you.
• If element already exists then

9595

...

valuekey

If element already exists, then
value will be updated.

Cpt S 223. School of EECS, WSU

Example (cont.)
...
months["may"] = 31;
months["june"] = 30;
...
months["december"] = 31;

cout << “february -> " << months[“february"] << endl;
map<const char*, int, ltstr>::iterator cur = months.find("june");
map<const char*, int, ltstr>::iterator prev = cur;
map<const char*, int, ltstr>::iterator next = cur;
++next; --prev;
cout << "Previous (in alphabetical order) is " << (*prev).first << endl;
cout << "Next (in alphabetical order) is " << (*next).first << endl;

months["february"] = 29; What will this

9696

cout << “february -> " << months[“february"] << endl;

}

code do?

Cpt S 223. School of EECS, WSU

Implementation of
set and map

 Support insertion, deletion and search
in worst-case logarithmic timein worst case logarithmic time

 Use balanced binary search tree
(a red-black tree)(a red-black tree)

 Support for iterator
T d i t t it d d Tree node points to its predecessor and
successor

Which traversal order?

9797

 Which traversal order?

Cpt S 223. School of EECS, WSU

When to use set and when to
use map?
 set

 Whenever your entire record structure to be used
th Kas the Key

 E.g., to maintain a searchable set of numbers

 map
 Whenever your record structure has fields other y

than Key
 E.g., employee record (search Key: ID, Value: all

other info such as name salary etc)

98

other info such as name, salary, etc.)

Cpt S 223. School of EECS, WSU

B-Trees

A Tree Data Structure for Disks

99Cpt S 223. School of EECS, WSU

Top 10 Largest Databases
Organization Database Size

WDCC 6,000 TBs

NERSC 2 800 TBsNERSC 2,800 TBs

AT&T 323 TBs

Google 33 trillion rows (91 million insertions per day)

Sprint 3 trillion rows (100 million insertions per day)

ChoicePoint 250 TBs

Yahoo! 100 TBs

YouTube 45 TBs

Amazon 42 TBs

Lib f C 20 TB

100100

Library of Congress 20 TBs

100
Source: www.businessintelligencelowdown.com, 2007.

Cpt S 223. School of EECS, WSU

How to count the bytes?

 Kilo ≈ x 103

 Mega ≈ x 106 Current limit for g
 Giga ≈ x 109

 Tera ≈ x 1012

single node
storage

 Tera ≈ x 10
 Peta ≈ x 1015

 Exa ≈ x 1018 Needs more Exa ≈ x 10
 Zeta ≈ x 1021

Needs more
sophisticated disk/IO

machine

101

 …

Cpt S 223. School of EECS, WSU

Primary storage vs. Disks
Primary Storage Secondary Storage

Hardware RAM (main memory),
cache

Disk (ie., I/O)
cache

Storage capacity >100 MB to 2-4GB Giga (109) to
Terabytes (1012) to..

D t i t T i t (d P i t tData persistence Transient (erased
after process
terminates)

Persistent
(permanently stored)

f l k l ll d (3Data access
speeds

~ a few clock cycles
(ie., x 10-9 seconds)

milliseconds (10-3

sec) =
Data seek time +

d i could be million times slower

102

read timecould be million times slower
than main memory read

Cpt S 223. School of EECS, WSU

Use a balanced BST?
 Google: 33 trillion items
 Indexed by ?

 IP, HTML page content

 Estimated access time (if we use a simple balanced BST): Estimated access time (if we use a simple balanced BST):
 h = O(log2 33x1012) 44.9 disk accesses
 Assume 120 disk accesses per second

==> Each search takes 0.37 seconds

 1 disk access == > 106 CPU instructions

What happens if you do
a million searches?

103103

 1 disk access == > 106 CPU instructions

103Cpt S 223. School of EECS, WSU

Main idea: Height reduction
 Why ?

 BST, AVL trees at best have heights O(lg n)
N 106 l 106 i hl 20 N=106 lg 106 is roughly 20

 20 disk seeks for each level would be too much!

 So reduce the height !
 How?

 Increase the log base beyond 2
 Eg., log5106 is < 9
 Instead of binary (2-ary) trees, use m-ary search trees s.t.

m>2

104Cpt S 223. School of EECS, WSU

How to store an m-way tree?

 Example: 3-way search tree
 Each node stores: 3 6

 ≤ 2 keys
 ≤ 3 children 2 4 85 71

 Height of a balanced 3-way g y
search tree?

105105105Cpt S 223. School of EECS, WSU

3 levels in a 3-way tree can
accommodate up to 26 elements

3-way tree
accommodate up to 26 elements

4-way tree 3 levels in a 4-way tree can
accommodate up to 63 elements

…

Cpt S 223. School of EECS, WSU 106

Bigger Idea
 Use an M-way search tree
 Each node access brings in M-1 keys an M child pointers
 Choose M so node size = 1 disk block size
 Height of tree = (logM N)

Tree node structure:

key

Tree node structure:

Should fit in one disk block

….

child0 child child2 child child

key1 key2
keyM-1

107107107

0 child1 child2 childM-3 childM-1

Cpt S 223. School of EECS, WSU

Using B-trees
Each node fits in 1disk block

….key1 key2
keyM-1

Main memory

M-way B-tree

… …

Main memory

Tree itself need NOT
fit in RAM

Actual data stored in the disk (at leaf levels of the B-tree)
and only keys are stored in the main treedi

sk

108

y y

Cpt S 223. School of EECS, WSU

Should fit in one disk block

Factors ….

child hild

key1 key2
keyM-1

How big are Capacity of a
single

child0 child1 child2 childM-3 childM-1

the keys? single
disk block

Design parameters (m=?)

Overall
search time

Tree height
dictates

#disk reads dominates

109Cpt S 223. School of EECS, WSU

Should fit in one disk block

Example ….

child hild

key1 key2
keyM-1

 Standard disk block size = 8192 bytes

child0 child1 child2 childM-3 childM-1

 Assume keys use 32 bytes, pointers use 4 bytes
 Keys uniquely identify data elementsKeys uniquely identify data elements

 Space per node = 32*(M-1) + 4*M = 8192

 M = 228
 log228 33x1012 = 5 7 (disk accesses)

110110

 log228 33x10 = 5.7 (disk accesses)
 Each search takes 0.047 seconds

110Cpt S 223. School of EECS, WSU

5-way tree of 31 nodes has only y y
3 levels

Index to the Data

Real Data Items stored at leaves
as disk blocks

111Cpt S 223. School of EECS, WSU

B+ trees: Definition
 A B+ tree of order M is an M-way tree with all the A B+ tree of order M is an M-way tree with all the

following properties:

1. Leaves store the real data items
2. Internal nodes store up to M-1 keys

s.t., key i is the smallest key in subtree i+1
R t h b t 2 t M hild3. Root can have between 2 to M children

4. Each internal node (except root) has between ceil(M/2) to
M children
All leaves are at the same depth5. All leaves are at the same depth

6. Each leaf has between ceil(L/2) and L data items, for
some L

112
Parameters: N, M, L

Cpt S 223. School of EECS, WSU

B+ tree of order 5

Root

Internal
nodes

Leaves

• M=5 (order of the B+ tree)
• L=5 (#data items bound for leaves)

• Each int. node (except root)
has to have at least 3 children

• Each leaf has to have at least

113

() • Each leaf has to have at least
3 data items

Cpt S 223. School of EECS, WSU

B+ tree of order 5
• Index to the Data (store only keys)• Index to the Data (store only keys)
• Each internal node = 1 disk block

• Data items stored at leaves
E h l f 1 di k bl k

114

• Each leaf = 1 disk block

Cpt S 223. School of EECS, WSU

Example: Find (81) ?

- O(logM #leaves) disk block reads
- Within the leaf: O(L)

115

- or even better, O(log L) if data items are kept sorted

Cpt S 223. School of EECS, WSU

How to design a B+ tree?
 How to find the #children per node?

i.e., M=?
 How to find the #data items per leaf? How to find the #data items per leaf?

i.e., L=?

116Cpt S 223. School of EECS, WSU

Node Data Structures
 Root & internal nodes

 M child pointers

 Leaf node
 Let L be the max

b f d t M child pointers
 4 x M bytes

 M-1 key entries

number of data
items per leaf

 M 1 key entries
 (M-1) x K bytes Storage needed per

leaf:
 L x D bytes L x D bytes

• D denotes the size of each data item

117

• K denotes the size of a key (ie., K <= D)
Cpt S 223. School of EECS, WSU

How to choose M and L ?

 M & L are chosen based on:
1 Disk block size (B)1. Disk block size (B)
2. Data element size (D)
3 Key size (K)3. Key size (K)

118Cpt S 223. School of EECS, WSU

Calculating M: threshold for
internal node capacity
 Each internal node needs

 4 x M + (M-1) x K bytes

 Each internal node has to fit inside a disk block
 ==> B = 4M + (M-1)K

 Solving the above: Solving the above:
 M = floor[(B+K) / (4+K)]

 Example: For K=4, B=8 KB:
 M = 1,024

119Cpt S 223. School of EECS, WSU

Calculating L:
threshold for leaf capacity

 L = floor[B / D]

 Example: For D=4, B = 8 KB:
 L = 2,048 ,
 ie., each leaf has to store 1,024 to 2,048

data items

120Cpt S 223. School of EECS, WSU

How to use a B+ tree?
Find
Insert
Delete

121Cpt S 223. School of EECS, WSU

Example: Find (81) ?

- O(logM #leaves) disk block reads
- Within each internal node:

O(lg M) assuming binary search

122

-O(lg M) assuming binary search
- Within the leaf:

-O(lg L) assuming binary search & data kept sortedCpt S 223. School of EECS, WSU

B+ trees: Other Counters

 Let N be the total number of data items
 How many leaves in the tree? how How many leaves in the tree?

 = between ceil [N / L] and ceil [2N / L]

how

 What is the tree height? how

 = O (logM #leaves)

123Cpt S 223. School of EECS, WSU

B+ tree: Insertion

 Ends up maintaining all leaves at the
same level before and after insertionsame level before and after insertion

This could mean increasing the height This could mean increasing the height
of the tree

124Cpt S 223. School of EECS, WSU

Example: Insert (57) before

Insert here, there is space!

125Cpt S 223. School of EECS, WSU

Example: Insert (57) after

Next: Insert(55)
Empty now
S lit th i l f i t 2 t

No more
room

126

So, split the previous leaf into 2 parts

Cpt S 223. School of EECS, WSU

Example.. Insert (55) after
Split parent node There is one empty room here

Next: Insert (40) Hmm.. Leaf already full,
d t i hb !

127

and no empty neighbors!
No space
here too Cpt S 223. School of EECS, WSU

Example.. Insert (40) after

Note: Splitting the root itself would mean we are

128

increasing the height by 1
Cpt S 223. School of EECS, WSU

Example.. Delete (99) before

Too few (<3 data items) after delete (L/2=3)

Will be left with too few children (<3) after move (M/2=3)

129

Borrow leaf from left neighbor
Cpt S 223. School of EECS, WSU

Example.. Delete (99) after

130Cpt S 223. School of EECS, WSU

Summary: Trees
 Trees are ubiquitous in software
 Search trees important for fast search

 Support logarithmic searches
 Must be kept balanced (AVL, Splay, B-tree)

STL t and classes use balanced trees STL set and map classes use balanced trees
to support logarithmic insert, delete and
search
 Implementation uses top-down red-black trees

(not AVL) – Chapter 12 in the book
S h t f Di k

131131

 Search tree for Disks
 B+ tree

Cpt S 223. School of EECS, WSU

