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Hashing …
 Again, a (dynamic) set of elements in which we do ‘search’, ‘insert’, and 

‘delete’
 Linear ones: lists, stacks, queues, …
 Nonlinear ones: trees, graphs (relations between elements are explicit)

 Now for the case ‘relation is not important’, but want to be ‘efficient’ for 
searching (like in a dictionary)!

 Generalizing an ordinary array, 
 direct addressing!
 An array is a direct-address table

 A set of N keys, compute the index, then use an array of size N
 Key k at k -> direct address, now key k at h(k) -> hashing

 Basic operation is  in O(1)!

 To ‘hash’ (is to ‘chop into pieces’ or to ‘mince’), is to make a ‘map’ or a 
‘transform’ …
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Hash Table

 Hash table is a data structure that support
 Finds, insertions, deletions (deletions may be 

unnecessary in some applications)

 The implementation of hash tables is called hashing
 A technique which allows the executions of above operations 

in constant average time

 Tree operations that requires any ordering information 
among elements are not supported
 findMin and findMax
 Successor and predecessor
 Report data within a given range
 List out the data in order
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General Idea
 The ideal hash table data 

structure is an array of 
some fixed size, 
containing the items

 A search is performed 
based on key

 Each key is mapped into 
some position in the range 
0 to TableSize-1

 The mapping is called 
hash function

A hash table

Data item
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Unrealistic Solution 
 Each position (slot) corresponds to a key in the 

universe of keys
 T[k] corresponds to an element with key k
 If the set contains no element with key k, then T[k]=NULL
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Unrealistic Solution

 Insertion, deletion and finds all take O(1) 
(worst-case) time

 Problem: waste too much space if the 
universe is too large compared with the actual 
number of elements to be stored
 E.g. student IDs are 8-digit integers, so the 

universe size is 108, but we only have about 7000 
students
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Hashing

Usually, m << N

h(Ki) = an integer in [0, …, m-1] called the hash value of Ki

The keys are assumed to be natural numbers, if they are not, they 
can always be converted or interpreted in natural numbers.
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Example Applications
 Compilers use hash tables (symbol table) to keep 

track of declared variables.

 On-line spell checkers.  After prehashing the entire 
dictionary, one can check each word in constant time 
and print out the misspelled word in order of their 
appearance in the document.

 Useful in applications when the input keys come in 
sorted order.  This is a bad case for binary search 
tree.  AVL tree and B+-tree are harder to implement 
and they are not necessarily more efficient. 
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Hash Function
 With hashing, an element of key k is stored in T[h(k)]

 h: hash function
 maps the universe U of keys into the slots of a hash table 

T[0,1,...,m-1]
 an element of key k hashes to slot h(k)
 h(k) is the hash value of key k
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Collision

 Problem: collision
 two keys may hash to the same slot
 can we ensure that any two distinct keys get 

different cells?
No, if N>m, where m is the size of the hash table

 Task 1: Design a good hash function
 that is fast to compute and 
 can minimize the number of collisions

 Task 2: Design a method to resolve the 
collisions when they occur
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Design Hash Function
 A simple and reasonable strategy: h(k) = k mod m

 e.g. m=12, k=100, h(k)=4
 Requires only a single division operation (quite fast)

 Certain values of m should be avoided
 e.g. if m=2p, then h(k) is just the p lowest-order bits of k; the hash 

function does not depend on all the bits
 Similarly, if the keys are decimal numbers, should not set m to be a 

power of 10

 It’s a good practice to set the table size m to be a prime number

 Good values for m: primes not too close to exact powers of 2
 e.g. the hash table is to hold 2000 numbers, and we don’t mind an 

average of 3 numbers being hashed to the same entry
choose m=701
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Deal with String-type Keys
 Can the keys be strings?
 Most hash functions assume that the keys are natural 

numbers
 if keys are not natural numbers, a way must be found to 

interpret them as natural numbers

 Method 1: Add up the ASCII values of the characters 
in the string
 Problems:

Different permutations of the same set of characters would have 
the same hash value

If the table size is large, the keys are not distribute well. e.g. 
Suppose m=10007 and all the keys are eight or fewer 
characters long.  Since ASCII value <= 127, the hash function 
can only assume values between 0 and 127*8=1016
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 Method 2

 If the first 3 characters are random and the table size is 
10,0007 => a reasonably equitable distribution

 Problem
English is not random
Only 28 percent of the table can actually be hashed to 

(assuming a table size of 10,007)

 Method 3
 computes
 involves all characters in the key and be expected to 

distribute well
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Collision Handling: 
(1) Separate Chaining

 Lilke ‘equivalent classes’ or clock numbers in math

 Instead of a hash table, we use a table of linked list
 keep a linked list of keys that hash to the same value

Keys: 

Set of squares

Hash function:

h(K) = K mod 10
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Separate Chaining Operations

 To insert a key K
 Compute h(K) to determine which list to traverse 
 If T[h(K)] contains a null pointer, initiatize this entry 

to point to a linked list that contains K alone. 
 If T[h(K)] is a non-empty list, we add K at the 

beginning of this list.

 To delete a key K
 compute h(K), then search for K within the list at 

T[h(K)].  Delete K if it is found.
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Separate Chaining Features
 Assume that we will be storing n  keys.  Then we 

should make m  the next larger prime number.  If the 
hash function works well, the number of keys in each 
linked list will be a small constant.

 Therefore, we expect that each search, insertion, and 
deletion can be  done in constant time.

 Disadvantage: Memory allocation in linked list 
manipulation will slow down the program.  

 Advantage: deletion is easy.
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Collision Handling:
(2) Open Addressing

 Instead of following pointers, compute the sequence of slots to 
be examined

 Open addressing: relocate the key K to be inserted if it collides 
with an existing key.  
 We store K at an entry different from T[h(K)]. 

 Two issues arise
 what is the relocation scheme?
 how to search for K later?

 Three common methods for resolving a collision in open 
addressing
 Linear probing
 Quadratic probing
 Double hashing
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Open Addressing Strategy

 To insert a key K, compute h0(K).  If T[h0(K)] is 
empty, insert it there.  If collision occurs, 
probe alternative cell h1(K), h2(K), .... until an 
empty cell is found.

 hi(K) = (hash(K) + f(i)) mod m, with f(0) = 0
 f: collision resolution strategy
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Linear Probing
 f(i) =i

 cells are probed sequentially (with wrap-around) 
 hi(K) = (hash(K) +  i) mod m

 Insertion:
 Let K be the new key to be inserted, compute 

hash(K)
 For i = 0 to m-1

compute L = ( hash(K) + I ) mod m
T[L] is empty, then we put K there and stop. 

 If we cannot find an empty entry to put K, it means 
that the table is full and we should report an error. 
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Linear Probing Example

 hi(K) = (hash(K) +  i) mod m
 E.g, inserting keys 89, 18, 49, 58, 69 with hash(K)=K mod 10

To insert 58, 
probe T[8], 
T[9], T[0], T[1]

To insert 69, 
probe T[9], 
T[0], T[1], T[2] 
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Primary Clustering
 We call a block of contiguously occupied table entries a cluster

 On the average, when we insert a new key K, we may hit the middle of a 
cluster.  Therefore, the time to insert K would be proportional to half the 
size of a cluster.  That is, the larger the cluster, the slower the 
performance. 

 Linear probing has the following disadvantages:
 Once h(K) falls into a cluster, this cluster will definitely grow in size by one.  

Thus, this may worsen the performance of insertion in the future.

 If two clusters are only separated by one entry, then inserting one key into a 
cluster can merge the two clusters together.  Thus, the cluster size can 
increase drastically by a single insertion.  This means that the performance 
of insertion can deteriorate drastically after a single insertion.

 Large clusters are easy targets for collisions.
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Quadratic Probing Example
 f(i) = i2

 hi(K) = ( hash(K) +  i2 ) mod m
 E.g., inserting keys 89, 18, 49, 58, 69  with hash(K) = K mod 10

To insert 58, probe 
T[8], T[9], T[(8+4) 
mod 10]

To insert 69, probe 
T[9], T[(9+1) mod 
10], T[(9+4) mod 
10]
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Quadratic Probing
 Two keys with different home positions will have different probe 

sequences
 e.g. m=101, h(k1)=30, h(k2)=29
 probe sequence for k1: 30,30+1, 30+4, 30+9
 probe sequence for k2: 29, 29+1, 29+4, 29+9

 If the table size is prime, then a new key can always be inserted if 
the table is at least half empty (see proof in text book)

 Secondary clustering
 Keys that hash to the same home position will probe the same alternative 

cells
 Simulation results suggest that it generally causes less than an extra half 

probe per search
 To avoid secondary clustering, the probe sequence need to be a function 

of the original key value, not the home position
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Double Hashing
 To alleviate the problem of clustering, the sequence of 

probes for a key should be independent of its primary 
position => use two hash functions: hash() and 
hash2()

 f(i) = i * hash2(K)
 E.g. hash2(K) = R - (K mod R), with R is a prime smaller than 

m
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Double Hashing Example
 hi(K) = ( hash(K) + f(i) ) mod m;   hash(K) = K mod m
 f(i) = i * hash2(K);    hash2(K) = R - (K mod R),
 Example: m=10, R = 7 and insert keys 89, 18, 49, 58, 69

To insert 49, 
hash2(49)=7, 2nd 
probe is T[(9+7) 
mod 10]

To insert 58, 
hash2(58)=5, 2nd 
probe is T[(8+5) 
mod 10]

To insert 69, 
hash2(69)=1, 2nd 
probe is T[(9+1) 
mod 10]



 

Hashing 26

 

Choice of hash2()
 Hash2() must never evaluate to zero

 For any key K, hash2(K) must be relatively prime to the table size 
m.  Otherwise, we will only be able to examine a fraction of the 
table entries.  
 E.g.,if hash(K) = 0 and hash2(K) = m/2, then we can only examine the 

entries T[0], T[m/2], and nothing else!

 One solution is to make m prime, and choose R to be a prime 
smaller than m, and set

             hash2(K) = R – (K mod R)

 Quadratic probing, however, does not require the use of a second 
hash function 
 likely to be simpler and faster in practice
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Deletion in Open Addressing
 Actual deletion cannot be performed in open 

addressing hash tables
 otherwise this will isolate records further down the probe 

sequence

 Solution: Add an extra bit to each table entry, and 
mark a deleted slot by storing a special value 
DELETED (tombstone)
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Perfect hashing

 Two-level hashing scheme
 The first level is the same as with ‘chaining’
 Make a secondary hash table with an 

associated hash function h_j, instead of 
making a list of the keys hashing to the same 
slot


	Hashing
	Hashing …
	Hash Table
	General Idea
	Unrealistic Solution
	Unrealistic Solution
	Slide 7
	Example Applications
	Hash Function
	Collision
	Design Hash Function
	Deal with String-type Keys
	Slide 13
	Collision Handling: (1) Separate Chaining
	Separate Chaining Operations
	Separate Chaining Features
	Collision Handling: (2) Open Addressing
	Open Addressing Strategy
	Linear Probing
	Linear Probing Example
	Primary Clustering
	Quadratic Probing Example
	Quadratic Probing
	Double Hashing
	Double Hashing Example
	Choice of hash2()
	Deletion in Open Addressing
	Perfect hashing

