

Hashing

COMP171

Hashing 2

Hashing …
 Again, a (dynamic) set of elements in which we do ‘search’, ‘insert’, and

‘delete’
 Linear ones: lists, stacks, queues, …
 Nonlinear ones: trees, graphs (relations between elements are explicit)

 Now for the case ‘relation is not important’, but want to be ‘efficient’ for
searching (like in a dictionary)!

 Generalizing an ordinary array,
 direct addressing!
 An array is a direct-address table

 A set of N keys, compute the index, then use an array of size N
 Key k at k -> direct address, now key k at h(k) -> hashing

 Basic operation is in O(1)!

 To ‘hash’ (is to ‘chop into pieces’ or to ‘mince’), is to make a ‘map’ or a
‘transform’ …

Hashing 3

Hash Table

 Hash table is a data structure that support
 Finds, insertions, deletions (deletions may be

unnecessary in some applications)

 The implementation of hash tables is called hashing
 A technique which allows the executions of above operations

in constant average time

 Tree operations that requires any ordering information
among elements are not supported
 findMin and findMax
 Successor and predecessor
 Report data within a given range
 List out the data in order

Hashing 4

General Idea
 The ideal hash table data

structure is an array of
some fixed size,
containing the items

 A search is performed
based on key

 Each key is mapped into
some position in the range
0 to TableSize-1

 The mapping is called
hash function

A hash table

Data item

Hashing 5

Unrealistic Solution
 Each position (slot) corresponds to a key in the

universe of keys
 T[k] corresponds to an element with key k
 If the set contains no element with key k, then T[k]=NULL

Hashing 6

Unrealistic Solution

 Insertion, deletion and finds all take O(1)
(worst-case) time

 Problem: waste too much space if the
universe is too large compared with the actual
number of elements to be stored
 E.g. student IDs are 8-digit integers, so the

universe size is 108, but we only have about 7000
students

Hashing 7

Hashing

Usually, m << N

h(Ki) = an integer in [0, …, m-1] called the hash value of Ki

The keys are assumed to be natural numbers, if they are not, they
can always be converted or interpreted in natural numbers.

Hashing 8

Example Applications
 Compilers use hash tables (symbol table) to keep

track of declared variables.

 On-line spell checkers. After prehashing the entire
dictionary, one can check each word in constant time
and print out the misspelled word in order of their
appearance in the document.

 Useful in applications when the input keys come in
sorted order. This is a bad case for binary search
tree. AVL tree and B+-tree are harder to implement
and they are not necessarily more efficient.

Hashing 9

Hash Function
 With hashing, an element of key k is stored in T[h(k)]

 h: hash function
 maps the universe U of keys into the slots of a hash table

T[0,1,...,m-1]
 an element of key k hashes to slot h(k)
 h(k) is the hash value of key k

Hashing 10

Collision

 Problem: collision
 two keys may hash to the same slot
 can we ensure that any two distinct keys get

different cells?
No, if N>m, where m is the size of the hash table

 Task 1: Design a good hash function
 that is fast to compute and
 can minimize the number of collisions

 Task 2: Design a method to resolve the
collisions when they occur

Hashing 11

Design Hash Function
 A simple and reasonable strategy: h(k) = k mod m

 e.g. m=12, k=100, h(k)=4
 Requires only a single division operation (quite fast)

 Certain values of m should be avoided
 e.g. if m=2p, then h(k) is just the p lowest-order bits of k; the hash

function does not depend on all the bits
 Similarly, if the keys are decimal numbers, should not set m to be a

power of 10

 It’s a good practice to set the table size m to be a prime number

 Good values for m: primes not too close to exact powers of 2
 e.g. the hash table is to hold 2000 numbers, and we don’t mind an

average of 3 numbers being hashed to the same entry
choose m=701

Hashing 12

Deal with String-type Keys
 Can the keys be strings?
 Most hash functions assume that the keys are natural

numbers
 if keys are not natural numbers, a way must be found to

interpret them as natural numbers

 Method 1: Add up the ASCII values of the characters
in the string
 Problems:

Different permutations of the same set of characters would have
the same hash value

If the table size is large, the keys are not distribute well. e.g.
Suppose m=10007 and all the keys are eight or fewer
characters long. Since ASCII value <= 127, the hash function
can only assume values between 0 and 127*8=1016

Hashing 13

 Method 2

 If the first 3 characters are random and the table size is
10,0007 => a reasonably equitable distribution

 Problem
English is not random
Only 28 percent of the table can actually be hashed to

(assuming a table size of 10,007)

 Method 3
 computes
 involves all characters in the key and be expected to

distribute well

1

0
37*]1[

KeySize

i

iiKeySizeKey

272a,…,z and space

Hashing 14

Collision Handling:
(1) Separate Chaining

 Lilke ‘equivalent classes’ or clock numbers in math

 Instead of a hash table, we use a table of linked list
 keep a linked list of keys that hash to the same value

Keys:

Set of squares

Hash function:

h(K) = K mod 10

Hashing 15

Separate Chaining Operations

 To insert a key K
 Compute h(K) to determine which list to traverse
 If T[h(K)] contains a null pointer, initiatize this entry

to point to a linked list that contains K alone.
 If T[h(K)] is a non-empty list, we add K at the

beginning of this list.

 To delete a key K
 compute h(K), then search for K within the list at

T[h(K)]. Delete K if it is found.

Hashing 16

Separate Chaining Features
 Assume that we will be storing n keys. Then we

should make m the next larger prime number. If the
hash function works well, the number of keys in each
linked list will be a small constant.

 Therefore, we expect that each search, insertion, and
deletion can be done in constant time.

 Disadvantage: Memory allocation in linked list
manipulation will slow down the program.

 Advantage: deletion is easy.

Hashing 17

Collision Handling:
(2) Open Addressing

 Instead of following pointers, compute the sequence of slots to
be examined

 Open addressing: relocate the key K to be inserted if it collides
with an existing key.
 We store K at an entry different from T[h(K)].

 Two issues arise
 what is the relocation scheme?
 how to search for K later?

 Three common methods for resolving a collision in open
addressing
 Linear probing
 Quadratic probing
 Double hashing

Hashing 18

Open Addressing Strategy

 To insert a key K, compute h0(K). If T[h0(K)] is
empty, insert it there. If collision occurs,
probe alternative cell h1(K), h2(K), until an
empty cell is found.

 hi(K) = (hash(K) + f(i)) mod m, with f(0) = 0
 f: collision resolution strategy

Hashing 19

Linear Probing
 f(i) =i

 cells are probed sequentially (with wrap-around)
 hi(K) = (hash(K) + i) mod m

 Insertion:
 Let K be the new key to be inserted, compute

hash(K)
 For i = 0 to m-1

compute L = (hash(K) + I) mod m
T[L] is empty, then we put K there and stop.

 If we cannot find an empty entry to put K, it means
that the table is full and we should report an error.

Hashing 20

Linear Probing Example

 hi(K) = (hash(K) + i) mod m
 E.g, inserting keys 89, 18, 49, 58, 69 with hash(K)=K mod 10

To insert 58,
probe T[8],
T[9], T[0], T[1]

To insert 69,
probe T[9],
T[0], T[1], T[2]

Hashing 21

Primary Clustering
 We call a block of contiguously occupied table entries a cluster

 On the average, when we insert a new key K, we may hit the middle of a
cluster. Therefore, the time to insert K would be proportional to half the
size of a cluster. That is, the larger the cluster, the slower the
performance.

 Linear probing has the following disadvantages:
 Once h(K) falls into a cluster, this cluster will definitely grow in size by one.

Thus, this may worsen the performance of insertion in the future.

 If two clusters are only separated by one entry, then inserting one key into a
cluster can merge the two clusters together. Thus, the cluster size can
increase drastically by a single insertion. This means that the performance
of insertion can deteriorate drastically after a single insertion.

 Large clusters are easy targets for collisions.

Hashing 22

Quadratic Probing Example
 f(i) = i2

 hi(K) = (hash(K) + i2) mod m
 E.g., inserting keys 89, 18, 49, 58, 69 with hash(K) = K mod 10

To insert 58, probe
T[8], T[9], T[(8+4)
mod 10]

To insert 69, probe
T[9], T[(9+1) mod
10], T[(9+4) mod
10]

Hashing 23

Quadratic Probing
 Two keys with different home positions will have different probe

sequences
 e.g. m=101, h(k1)=30, h(k2)=29
 probe sequence for k1: 30,30+1, 30+4, 30+9
 probe sequence for k2: 29, 29+1, 29+4, 29+9

 If the table size is prime, then a new key can always be inserted if
the table is at least half empty (see proof in text book)

 Secondary clustering
 Keys that hash to the same home position will probe the same alternative

cells
 Simulation results suggest that it generally causes less than an extra half

probe per search
 To avoid secondary clustering, the probe sequence need to be a function

of the original key value, not the home position

Hashing 24

Double Hashing
 To alleviate the problem of clustering, the sequence of

probes for a key should be independent of its primary
position => use two hash functions: hash() and
hash2()

 f(i) = i * hash2(K)
 E.g. hash2(K) = R - (K mod R), with R is a prime smaller than

m

Hashing 25

Double Hashing Example
 hi(K) = (hash(K) + f(i)) mod m; hash(K) = K mod m
 f(i) = i * hash2(K); hash2(K) = R - (K mod R),
 Example: m=10, R = 7 and insert keys 89, 18, 49, 58, 69

To insert 49,
hash2(49)=7, 2nd
probe is T[(9+7)
mod 10]

To insert 58,
hash2(58)=5, 2nd
probe is T[(8+5)
mod 10]

To insert 69,
hash2(69)=1, 2nd
probe is T[(9+1)
mod 10]

Hashing 26

Choice of hash2()
 Hash2() must never evaluate to zero

 For any key K, hash2(K) must be relatively prime to the table size
m. Otherwise, we will only be able to examine a fraction of the
table entries.
 E.g.,if hash(K) = 0 and hash2(K) = m/2, then we can only examine the

entries T[0], T[m/2], and nothing else!

 One solution is to make m prime, and choose R to be a prime
smaller than m, and set

 hash2(K) = R – (K mod R)

 Quadratic probing, however, does not require the use of a second
hash function
 likely to be simpler and faster in practice

Hashing 27

Deletion in Open Addressing
 Actual deletion cannot be performed in open

addressing hash tables
 otherwise this will isolate records further down the probe

sequence

 Solution: Add an extra bit to each table entry, and
mark a deleted slot by storing a special value
DELETED (tombstone)

Hashing 28

Perfect hashing

 Two-level hashing scheme
 The first level is the same as with ‘chaining’
 Make a secondary hash table with an

associated hash function h_j, instead of
making a list of the keys hashing to the same
slot

	Hashing
	Hashing …
	Hash Table
	General Idea
	Unrealistic Solution
	Unrealistic Solution
	Slide 7
	Example Applications
	Hash Function
	Collision
	Design Hash Function
	Deal with String-type Keys
	Slide 13
	Collision Handling: (1) Separate Chaining
	Separate Chaining Operations
	Separate Chaining Features
	Collision Handling: (2) Open Addressing
	Open Addressing Strategy
	Linear Probing
	Linear Probing Example
	Primary Clustering
	Quadratic Probing Example
	Quadratic Probing
	Double Hashing
	Double Hashing Example
	Choice of hash2()
	Deletion in Open Addressing
	Perfect hashing

