Graph \& BFS

Graphs

— Extremely useful tool in modeling problems
[Consist of:

- Vertices
- Edges

Vertices can be considered "sites" or locations.

Edges represent connections.

Application 1

Air flight system

- Each vertex represents a city
- Each edge represents a direct flight between two cities
- A query on direct flights = a query on whether an edge exists
- A query on how to get to a location = does a path exist from A to B
- We can even associate costs to edges (weighted graphs), then ask "what is the cheapest path from A to B"

Application 2

Wireless communication

- Represented by a weighted complete graph (every two vertices are connected by an edge)
- Each edge represents the Euclidean distance dij between two stations
- Each station uses a certain power i to transmit messages. Given this power i, only a few nodes can be reached (bold edges). A station reachable by i then uses its own power to relay the message to other stations not reachable by i .
- A typical wireless communication problem is: how to broadcast between all stations such that they are all connected and the power consumption is minimized.
- Graph, also called network (particularly when a weight is assgned to an edge)
\square A tree is a connected graph with no loops.
[Graph algorithms might be very difficult!
\square four color problem for planar graph!
- 171 only handles the simplest ones
- Traversal, BFS, DFS
[((Minimum) spanning tree)
] Shortest paths from the source
- Connected components, topological sort

Definition

- A graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ consists a set of vertices, V , and a set of edges, E.
\square Each edge is a pair of (v, w), where v, w belongs to V
\square If the pair is unordered, the graph is undirected; otherwise it is directed

An undirected graph

Terminology

1. If v_{1} and v_{2} are connected, they are said to be adjacent vertices
$\square \boldsymbol{v}_{1}$ and \boldsymbol{v}_{2} are endpoints of the edge $\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}\right\}$
2. If an edge e is connected to v, then v is said to be incident on e. Also, the edge e is said to be incident on v.

> If we are talking about directed graphs, where edges have direction. This means that $\left\{\mathrm{v}_{1}, \mathrm{v}_{2}\right\} \neq\left\{\mathrm{v}_{2}, \mathrm{v}_{1}\right\}$. Directed graphs are drawn with arrows (called arcs) between edges.

Graph Representation

- Two popular computer representations of a graph. Both represent the vertex set and the edge set, but in different ways.

1. Adjacency Matrix

Use a 2D matrix to represent the graph
2. Adjacency List

Use a 1D array of linked lists

Adjacency Matrix

	a	b	c	d	e
a	0	0	1	1	1
b	0	0	0	0	0
c	1	0	0	0	1
d	1	0	0	0	1
e	1	0	1	1	0

■ 2D array A[0..n-1, 0..n-1], where \boldsymbol{n} is the number of vertices in the graph

- Each row and column is indexed by the vertex id

ㅁ $e, g a=0, b=1, c=2, d=3, e=4$

- $\mathrm{A}[\mathrm{i}][\mathrm{ij}=1$ if there is an edge connecting vertices i and j; otherwise, $\mathrm{A}[\mathrm{i}]$ [] $]=0$
- The storage requirement is $\Theta\left(\mathrm{n}^{2}\right)$. It is not efficient if the graph has few edges. An adjacency matrix is an appropriate representation if the graph is dense: $|\mathrm{E}|=\Theta(|\mathrm{V}| \mathrm{2})$
- We can detect in $\mathrm{O}(1)$ time whether two vertices are connected.

Adjacency List

- If the graph is not dense, in other words, sparse, a better solution is an adjacency list
- The adjacency list is an array A[0..n-1] of lists, where n is the number of vertices in the graph.
- Each array entry is indexed by the vertex id
\square Each list A[i] stores the ids of the vertices adjacent to vertex i

Adjacency Matrix Example

	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$
$\mathbf{0}$	0	0	0	0	0	0	0	0	1	0
$\mathbf{1}$	0	0	1	1	0	0	0	1	0	1
$\mathbf{2}$	0	1	0	0	1	0	0	0	1	0
$\mathbf{3}$	0	1	0	0	1	1	0	0	0	0
$\mathbf{4}$	0	0	1	1	0	0	0	0	0	0
$\mathbf{5}$	0	0	0	1	0	0	1	0	0	0
$\mathbf{6}$	0	0	0	0	0	1	0	1	0	0
$\mathbf{7}$	0	1	0	0	0	0	1	0	0	0
$\mathbf{8}$	1	0	1	0	0	0	0	0	0	1
$\mathbf{9}$	0	1	0	0	0	0	0	0	1	0

Graph \& BFS / Slide 12

Adjacency List Example

$\mathbf{0}$	\rightarrow	8		
$\mathbf{1}$	\rightarrow	2	3	7

Storage of Adjacency List

- The array takes up $\Theta(n)$ space
\square Define degree of v, $\operatorname{deg}(v)$, to be the number of edges incident to v. Then, the total space to store the graph is proportional to:

$\sum_{\text {vertex } v} \operatorname{deg}(v)$

\square An edge $e=\{u, v\}$ of the graph contributes a count of 1 to $\operatorname{deg}(u)$ and contributes a count 1 to $\operatorname{deg}(v)$

- Therefore, $\Sigma_{\text {verex }}$ deg $(v)=2 \mathrm{~m}$, where m is the total number of edges
- In all, the adjacency list takes up $\Theta(n+m)$ space
- If $m=O\left(n^{2}\right)$ (i.e. dense graphs), both adjacent matrix and adjacent lists use $\Theta\left(n^{2}\right)$ space.
- If $m=O(n)$, adjacent list outperforms adjacent matrix
] However, one cannot tell in $\mathrm{O}(1)$ time whether two vertices are connected

Adjacency List vs. Matrix

〕 Adjacency List
[More compact than adjacency matrices if graph has few edges

- Requires more time to find if an edge exists
- Adjacency Matrix
[Always require n^{2} space
This can waste a lot of space if the number of edges are sparse
- Can quickly find if an edge exists
[It's a matrix, some algorithms can be solved by matrix computation!

Path between Vertices

- A path is a sequence of vertices $\left(\mathrm{v}_{0}, \mathrm{v}_{1}, \mathrm{v}_{2}, \ldots \mathrm{v}_{\mathrm{k}}\right)$ such that:
[For $0 \leq i<k,\left\{v_{i}, v_{i+1}\right\}$ is an edge
\square For $0 \leq i<k-1, v_{i} \neq v_{i+2}$
That is, the edge $\left\{v_{i}, v_{i+1}\right\} \neq\left\{v_{i+1}, v_{i+2}\right\}$

Note: a path is allowed to go through the same vertex or the same edge any number of times!

- The length of a path is the number of edges on the path

Types of paths

- A path is simple if and only if it does not contain a vertex more than once.
- A path is a cycle if and only if $v_{0}=v_{k}$
\square The beginning and end are the same vertex!
- A path contains a cycle as its sub-path if some vertex appears twice or more

Path Examples

Are these paths?

Any cycles?

What is the path's length?

1. $\{\mathrm{a}, \mathrm{c}, \mathrm{f}, \mathrm{e}\}$
2. $\{a, b, d, c, f, e\}$
3. $\{a, c, d, b, d, c, f, e\}$
4. $\{a, c, d, b, a\}$
5. $\{a, c, f, e, b, d, c, a\}$

Summary

- A graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ consists a set of vertices, V , and a set of edges, E. Each edge is a pair of (v, w), where v, w belongs to V
] graph, directed and undirected graph
] vertex, node, edge, arc
] incident, adjacent
] degree, in-degree, out-degree, isolated
[path, simple path,
- path of length k, subpath
\square cycle, simple cycle, acyclic
] connected, connected component
] neighbor, complete graph, planar graph

Graph Traversal

[Application example

- Given a graph representation and a vertex s in the graph
\square Find all paths from s to other vertices
- Two common graph traversal algorithms
\square Breadth-First Search (BFS)
- Find the shortest paths in an unweighted graph
\square Depth-First Search (DFS)
- Topological sort
\square Find strongly connected components

BFS and Shortest Path Problem

- Given any source vertex \boldsymbol{s}, BFS visits the other vertices at increasing distances away from s. In doing so, BFS discovers paths from s to other vertices
- What do we mean by "distance"? The number of edges on a path from s
- From 'local' to 'global', step by step.

Example
Consider s=vertex 1

Nodes at distance 1?
2, 3, 7, 9
Nodes at distance 2?
8, 6, 5, 4
Nodes at distance 3?
0

BFS Algorithm

```
Algorithm BFS(s)
Input: }s\mathrm{ is the source vertex
Output: Mark all vertices that can be visited from s.
1. for each vertex v
2. do flag[v] := false; // flag[ ]: visited table
3. }Q=\mathrm{ empty queue; Why use queue? Need FIFO
4. flag[s]:= true;
5. enqueue( }Q,s)\mathrm{ ;
6. while Q is not empty
7. do v}:=\mathrm{ dequeue(Q);
8. for each w adjacent to v
9.
10.
11.
        do if flag[w] = false
        then flag[w]:= true;
                        enqueue( }Q,w
```


BFS Example

Visited Table (T/F)

0	F
1	F
2	F
3	F
4	F
5	F
6	F
7	F
8	F
9	F

Initialize visited table (all False)

$$
\mathbf{Q}=\{\quad\}
$$

Initialize \mathbf{Q} to be empty

Adjacency List

Visited Table (T/F)

0	F
1	F
2	T
3	F
4	F
5	F
6	F
7	F
8	F
9	F

Flag that 2 has been visited

$$
\mathbf{Q}=\{2\}
$$

Place source 2 on the queue

$$
\mathbf{Q}=\{8,1,4\} \rightarrow\{1,4,0,9\}
$$

Dequeue 8.
-- Place all unvisited neighbors of 8 on the queue.
-- Notice that 2 is not placed on the queue again, it has been visited!

$$
\mathbf{Q}=\{4,0,9,3,7\} \rightarrow\{0,9,3,7\}
$$

Dequeue 4.
-- 4 has no unvisited neighbors!

Adjacency List Visited Table (T/F)

$\mathbf{0}$	T
$\mathbf{1}$	T
$\mathbf{2}$	T
$\mathbf{3}$	T
$\mathbf{4}$	T
$\mathbf{5}$	T
$\mathbf{6}$	T
$\mathbf{7}$	T
$\mathbf{8}$	T
$\mathbf{9}$	T

What did we discover?
Look at "visited" tables.
There exists a path from source vertex 2 to all vertices in the graph

Time Complexity of BFS (Using Adjacency List)

■ Assume adjacency list

- $\mathrm{n}=$ number of vertices $\mathrm{m}=$ number of edges
Algorithm BFS(s)
Input: s is the source vertex
Output: Mark all vertices that can be visited from s.

1. for each vertex v
2. do flag $[v]:=$ false;
3. $\quad Q=$ empty queue;
4. flag $[s]:=$ true;
5. enqueue (Q, s);
6. while Q is not empty
7. do $v:=\operatorname{dequeue}(Q)$;
8. for each w adjacent to v do if $\operatorname{flag}[w]=$ false
then $\operatorname{flag}[w]:=$ true;
enqueue (Q, w)

O(n + m)

Each vertex will enter Q

 at most once.Each iteration takes time proportional to $\operatorname{deg}(v)+1$ (the number 1 is to account for the case where $\operatorname{deg}(v)=0--$ the work required is 1 , not 0).

Running Time

[Recall: Given a graph with m edges, what is the total degree?

$$
\Sigma_{\text {vertex } v} \operatorname{deg}(v)=2 m
$$

— The total running time of the while loop is:

$$
\mathrm{O}\left(\Sigma_{\text {vertex } v}(\operatorname{deg}(\mathrm{v})+1)\right)=\mathrm{O}(\mathrm{n}+\mathrm{m})
$$

this is summing over all the iterations in the while loop!

Time Complexity of BFS (Using Adjacency Matrix)

■ Assume adjacency list
[$\mathrm{n}=$ number of vertices $\mathrm{m}=$ number of edges

Algorithm BFS(s)

Input: s is the source vertex
Output: Mark all vertices that can be visited from s.

1. for each vertex v
2. do flag $[v]:=$ false;
3. $\quad Q=$ empty queue;
4. flag $[s]:=$ true;
5. enqueue (Q, s);
6. while Q is not empty
7. do $v:=\operatorname{dequeue}(Q)$;
8. for each w adjacent to v
9. \quad do if $\operatorname{flag}[w]=$ false
10.
11. then $\operatorname{flag}[w]:=$ true; enqueue (Q, w)

$O\left(n^{2}\right)$

Finding the adjacent vertices of v requires checking all elements in the row. This takes linear time O(n).

Summing over all the n iterations, the total running time is $\mathrm{O}\left(\mathrm{n}^{2}\right)$.
So, with adjacency matrix, BFS is $\mathrm{O}\left(\mathrm{n}^{2}\right)$ independent of the number of edges m. With adjacent lists, BFS is $\mathrm{O}(\mathrm{n}+\mathrm{m})$; if $m=O\left(n^{2}\right)$ like in a dense graph, $\mathrm{O}(\mathrm{n}+\mathrm{m})=\mathrm{O}\left(\mathrm{n}^{2}\right)$

