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Graphs

 Extremely useful tool in modeling problems
 Consist of:

 Vertices
 Edges D

E

A
C

F
B

Vertex

Edge

Vertices can be
considered “sites”
or locations.

Edges represent
connections.
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Application 1

Air flight system

• Each vertex represents a city
• Each edge represents a direct flight between two cities
• A query on direct flights = a query on whether an edge exists
• A query on how to get to a location = does a path exist from A to B
• We can even associate costs to edges (weighted graphs), then 
ask “what is the cheapest path from A to B”
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Application 2
Wireless communication

 Represented by a weighted complete graph (every two vertices 
are connected by an edge)

 Each edge represents the Euclidean distance dij   between two 
stations

 Each station uses a certain power i to transmit messages. Given 
this power i, only a few nodes can be reached (bold edges).  A 
station reachable by i then uses its own power to relay the 
message to other stations not reachable by i.

  A typical wireless communication problem is: how to broadcast 
between all stations such that they are all connected and the 
power consumption  is minimized. 
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  Graph, also called network (particularly when 
a weight is assgned to an edge)

  A tree is a connected graph  with no loops.
  Graph algorithms might be very difficult!

 four color problem for planar graph!

  171 only handles the simplest ones
 Traversal, BFS, DFS
 ((Minimum) spanning tree)
 Shortest paths from the source
 Connected components, topological sort
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Definition
 A graph G=(V, E) consists a set of vertices, V, and a set of 

edges, E.
 Each edge is a pair of (v, w), where v, w belongs to V
 If the pair is unordered, the graph is undirected; otherwise it 

is directed

{c,f}

{a,c}{a,b}

{b,d} {c,d}

{e,f}

{b,e}

An undirected graph
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Terminology

1. If v1 and v2 are connected, they are said to 
be adjacent vertices

 v1 and v2 are endpoints of the edge {v1, v2}

2. If an edge e is connected to v, then v is said 
to be incident on e.  Also, the edge e is said 
to be incident on v.

3. {v1, v2} = {v2, v1}If we are talking about directed graphs, where edges have direction.  This
means that {v1,v2} ≠ {v2,v1} .  Directed graphs are drawn with arrows (called arcs) 
between edges. A B This means {A,B} only, not {B,A}
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Graph Representation
 Two popular computer representations of 

a graph.  Both represent the vertex set 
and the edge set, but in different ways.

1. Adjacency Matrix
Use a 2D matrix to represent the graph

2. Adjacency List
Use a 1D array of linked lists
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Adjacency Matrix

 2D array A[0..n-1, 0..n-1], where n is the number of vertices in the graph
 Each row and column is indexed by the vertex id

 e,g a=0, b=1, c=2, d=3, e=4
 A[i][j]=1 if there is an edge connecting vertices i and j; otherwise, A[i]

[j]=0
 The storage requirement is Θ(n2). It is not efficient if the graph has few 

edges. An adjacency matrix is an appropriate representation if the graph 
is dense: |E|=Θ(|V|2)

 We can detect in O(1) time whether two vertices are connected.
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Adjacency List

 If the graph is not dense, in other words, sparse, a better 
solution is an adjacency list

 The adjacency list is an array A[0..n-1] of lists, where n is the 
number of vertices in the graph.

 Each array entry is indexed by the vertex id
 Each list A[i] stores the ids of the vertices adjacent to vertex i
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Adjacency Matrix Example

2

4

3

5

1

7
6

9

8

0 0 1 2 3 4 5 6 7 8 9

0 0 0 0 0 0 0 0 0 1 0

1 0 0 1 1 0 0 0 1 0 1

2 0 1 0 0 1 0 0 0 1 0

3 0 1 0 0 1 1 0 0 0 0

4 0 0 1 1 0 0 0 0 0 0

5 0 0 0 1 0 0 1 0 0 0

6 0 0 0 0 0 1 0 1 0 0

7 0 1 0 0 0 0 1 0 0 0

8 1 0 1 0 0 0 0 0 0 1

9 0 1 0 0 0 0 0 0 1 0
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Adjacency List Example

2

4

3

5

1

7
6

9

8

0 0

1

2

3

4

5

6

7

8

9

2 3 7 9

8

1 4 8

1 4 5

2 3

3 6

5 7

1 6

0 2 9

1 8
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 The array takes up Θ(n) space
 Define degree of v, deg(v), to be the number of edges incident to 

v.  Then, the total space to store the graph is proportional to:

 An edge e={u,v} of the graph contributes a count of 1 to deg(u) 
and contributes a count 1 to deg(v)

 Therefore, Σvertex vdeg(v) = 2m, where m is the total number of 
edges

 In all, the adjacency list takes up Θ(n+m) space
 If m = O(n2) (i.e. dense graphs), both adjacent matrix and adjacent 

lists use Θ(n2) space.
 If m = O(n), adjacent list outperforms adjacent matrix

 However, one cannot tell in O(1) time whether two vertices are 
connected

Storage of Adjacency List


v

v
vertex 

)deg(
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Adjacency List vs. Matrix
 Adjacency List

 More compact than adjacency matrices if graph has few edges
 Requires more time to find if an edge exists

 Adjacency Matrix
 Always require n2 space

This can waste a lot of space if the number of edges are sparse
 Can quickly find if an edge exists
 It’s a matrix, some algorithms can be solved by matrix computation!
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Path between Vertices
 A path is a sequence of vertices (v0, v1, v2,… vk) such 

that:
 For 0 ≤ i < k,  {vi, vi+1} is an edge
 For 0 ≤ i < k-1, vi ≠ vi+2    

That is, the edge {vi, vi+1} ≠ {vi+1, vi+2}

Note: a path is allowed to go through the same vertex or the same edge any 
number of times!

 The length of a path is the number of edges on the 
path
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Types of paths

 A path is simple if and only if it does not 
contain a vertex more than once.

 A path is a cycle if and only if v0= vk

The beginning and end are the same vertex!

 A path contains a cycle as its sub-path if some vertex 
appears twice or more
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Path Examples

1. {a,c,f,e}

2. {a,b,d,c,f,e}

3. {a, c, d, b, d, c, f, e}

4. {a,c,d,b,a}

5. {a,c,f,e,b,d,c,a}

Are these paths?

Any cycles?

What is the path’s length?
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Summary
  A graph G=(V, E) consists a set of vertices, V, and a 

set of edges, E. Each edge is a pair of (v, w), where v, 
w belongs to V

 graph, directed and undirected graph
  vertex, node, edge, arc
  incident, adjacent
  degree, in-degree, out-degree, isolated
  path, simple path,
  path of length k, subpath
  cycle, simple cycle, acyclic
  connected, connected component
  neighbor, complete graph, planar graph
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Graph Traversal
  Application example

 Given a graph representation and a vertex s in the graph
 Find all paths from s to other vertices

 Two common graph traversal algorithms
 Breadth-First Search (BFS)

 Find the shortest paths in an unweighted graph
 Depth-First Search (DFS)

 Topological sort
 Find strongly connected components
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BFS and Shortest Path Problem
 Given any source vertex s, BFS visits the other vertices at increasing 

distances away from s.  In doing so, BFS discovers paths from s to other 
vertices

 What do we mean by “distance”?  The number of edges on a path from s
 From ‘local’ to ‘global’, step by step.

2

4

3

5

1

7
6

9

8

0
Consider s=vertex 1

Nodes at distance 1?
    2, 3, 7, 91

1

1

1
2

22

2

s

Example

Nodes at distance 2?
  8, 6, 5, 4

Nodes at distance 3?
  0
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BFS Algorithm

Why use queue? Need FIFO 
// flag[ ]: visited table



 

Graph & BFS / Slide 22

 

BFS Example

2

4

3

5

1

7
6

9

8

0

Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)

F

F

F

F

F

F

F

F

F

F

Q = {    }

Initialize visited
table (all False)

Initialize Q to be empty
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2

4

3

5

1

7
6

9

8

0

Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)

F

F

T

F

F

F

F

F

F

F

Q = {  2   }

Flag that 2 has 
been visited

Place source 2 on the queue
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2

4

3

5

1

7
6

9

8

0

Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)

F

T

T

F

T

F

F

F

T

F

Q = {2} →  {  8, 1, 4 }

Mark neighbors
as visited 1, 4, 8

Dequeue 2.  
Place all unvisited neighbors of 2 on the queue

Neighbors
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2

4

3

5

1

7
6

9

8

0

Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)

T

T

T

F

T

F

F

F

T

T

Q = {  8, 1, 4 } → { 1, 4, 0, 9 } 

Mark new visited
Neighbors 0, 9

Dequeue 8.  
 -- Place all unvisited neighbors of 8 on the queue.
 -- Notice that 2 is not placed on the queue again, it has been visited!

Neighbors
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2

4

3

5

1

7
6

9

8

0

Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)

T

T

T

T

T

F

F

T

T

T

Q = {  1, 4, 0, 9 } → { 4, 0, 9, 3, 7 } 

Mark new visited
Neighbors 3, 7

Dequeue 1.  
 -- Place all unvisited neighbors of 1 on the queue.
 -- Only nodes 3 and 7 haven’t been visited yet.

Neighbors
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2

4

3

5

1

7
6

9

8

0

Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)

T

T

T

T

T

F

F

T

T

T

Q = { 4, 0, 9, 3, 7 } → { 0, 9, 3, 7 } 
 
Dequeue 4.  
 -- 4 has no unvisited neighbors!

Neighbors
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2

4

3

5

1

7
6

9

8

0

Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)

T

T

T

T

T

F

F

T

T

T

Q = { 0, 9, 3, 7 } → { 9, 3, 7 } 
 
Dequeue 0.  
 -- 0 has no unvisited neighbors!

Neighbors
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2

4

3

5

1

7
6

9

8

0

Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)

T

T

T

T

T

F

F

T

T

T

Q = { 9, 3, 7 } → { 3, 7 } 
 
Dequeue 9.  
 -- 9 has no unvisited neighbors!

Neighbors
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2

4

3

5

1

7
6

9

8

0

Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)

T

T

T

T

T

T

F

T

T

T

Q = { 3, 7 } → { 7, 5 } 
 
Dequeue 3.  
 -- place neighbor 5 on the queue.

Neighbors

Mark new visited
Vertex 5
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2

4

3

5

1

7
6

9

8

0

Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)

T

T

T

T

T

T

T

T

T

T

Q = { 7, 5 } → { 5, 6 } 
 
Dequeue 7.  
 -- place neighbor 6 on the queue

Neighbors

Mark new visited
Vertex 6
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2

4

3

5

1

7
6

9

8

0

Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)

T

T

T

T

T

T

T

T

T

T

Q = { 5, 6} → { 6 } 
 
Dequeue 5.  
 -- no unvisited neighbors of 5

Neighbors
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2

4

3

5

1

7
6

9

8

0

Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)

T

T

T

T

T

T

T

T

T

T

Q = { 6 } → {  } 
 
Dequeue 6.  
 -- no unvisited neighbors of 6

Neighbors
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2

4

3

5

1

7
6

9

8

0

Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)

T

T

T

T

T

T

T

T

T

T

Q = {  } 
 

STOP!!!   Q is empty!!!

What did we discover?

Look at “visited” tables.

There exists a path from source
vertex 2 to all vertices in the graph
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Time Complexity of BFS
(Using Adjacency List)

 Assume adjacency list
 n = number of vertices   m = number of edges

Each vertex will enter Q 
at most once.

Each iteration takes time 
proportional to deg(v) + 1  (the 
number 1 is to account for the 
case where deg(v) = 0 --- the 
work required is 1, not 0).

O(n + m)
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Running Time

 Recall: Given a graph with m edges, what is 
the total degree?

 The total running time of the while loop is:

    this is summing over all the iterations in the 
while loop!

O( Σvertex v  (deg(v) + 1) ) = O(n+m)

 Σvertex v   deg(v)  =  2m
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Time Complexity of BFS
(Using Adjacency Matrix)

 Assume adjacency list
 n = number of vertices   m = number of edges

Finding the adjacent vertices of v 
requires checking all elements in the 
row. This takes linear time O(n).

Summing over all the n iterations, the 
total running time is O(n2).

O(n2)

So, with adjacency matrix, BFS is O(n2) 
independent of the number of edges m.  
With adjacent lists, BFS is O(n+m); if 
m=O(n2) like in a dense graph, 
O(n+m)=O(n2).
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