

Graph & BFS

Graph & BFS / Slide 2

Graphs

 Extremely useful tool in modeling problems
 Consist of:

 Vertices
 Edges D

E

A
C

F
B

Vertex

Edge

Vertices can be
considered “sites”
or locations.

Edges represent
connections.

Graph & BFS / Slide 3

Application 1

Air flight system

• Each vertex represents a city
• Each edge represents a direct flight between two cities
• A query on direct flights = a query on whether an edge exists
• A query on how to get to a location = does a path exist from A to B
• We can even associate costs to edges (weighted graphs), then
ask “what is the cheapest path from A to B”

Graph & BFS / Slide 4

Application 2
Wireless communication

 Represented by a weighted complete graph (every two vertices
are connected by an edge)

 Each edge represents the Euclidean distance dij between two
stations

 Each station uses a certain power i to transmit messages. Given
this power i, only a few nodes can be reached (bold edges). A
station reachable by i then uses its own power to relay the
message to other stations not reachable by i.

 A typical wireless communication problem is: how to broadcast
between all stations such that they are all connected and the
power consumption is minimized.

Graph & BFS / Slide 5

 Graph, also called network (particularly when
a weight is assgned to an edge)

 A tree is a connected graph with no loops.
 Graph algorithms might be very difficult!

 four color problem for planar graph!

 171 only handles the simplest ones
 Traversal, BFS, DFS
 ((Minimum) spanning tree)
 Shortest paths from the source
 Connected components, topological sort

Graph & BFS / Slide 6

Definition
 A graph G=(V, E) consists a set of vertices, V, and a set of

edges, E.
 Each edge is a pair of (v, w), where v, w belongs to V
 If the pair is unordered, the graph is undirected; otherwise it

is directed

{c,f}

{a,c}{a,b}

{b,d} {c,d}

{e,f}

{b,e}

An undirected graph

Graph & BFS / Slide 7

Terminology

1. If v1 and v2 are connected, they are said to
be adjacent vertices

 v1 and v2 are endpoints of the edge {v1, v2}

2. If an edge e is connected to v, then v is said
to be incident on e. Also, the edge e is said
to be incident on v.

3. {v1, v2} = {v2, v1}If we are talking about directed graphs, where edges have direction. This
means that {v1,v2} ≠ {v2,v1} . Directed graphs are drawn with arrows (called arcs)
between edges. A B This means {A,B} only, not {B,A}

Graph & BFS / Slide 8

Graph Representation
 Two popular computer representations of

a graph. Both represent the vertex set
and the edge set, but in different ways.

1. Adjacency Matrix
Use a 2D matrix to represent the graph

2. Adjacency List
Use a 1D array of linked lists

Graph & BFS / Slide 9

Adjacency Matrix

 2D array A[0..n-1, 0..n-1], where n is the number of vertices in the graph
 Each row and column is indexed by the vertex id

 e,g a=0, b=1, c=2, d=3, e=4
 A[i][j]=1 if there is an edge connecting vertices i and j; otherwise, A[i]

[j]=0
 The storage requirement is Θ(n2). It is not efficient if the graph has few

edges. An adjacency matrix is an appropriate representation if the graph
is dense: |E|=Θ(|V|2)

 We can detect in O(1) time whether two vertices are connected.

Graph & BFS / Slide 10

Adjacency List

 If the graph is not dense, in other words, sparse, a better
solution is an adjacency list

 The adjacency list is an array A[0..n-1] of lists, where n is the
number of vertices in the graph.

 Each array entry is indexed by the vertex id
 Each list A[i] stores the ids of the vertices adjacent to vertex i

Graph & BFS / Slide 11

Adjacency Matrix Example

2

4

3

5

1

7
6

9

8

0 0 1 2 3 4 5 6 7 8 9

0 0 0 0 0 0 0 0 0 1 0

1 0 0 1 1 0 0 0 1 0 1

2 0 1 0 0 1 0 0 0 1 0

3 0 1 0 0 1 1 0 0 0 0

4 0 0 1 1 0 0 0 0 0 0

5 0 0 0 1 0 0 1 0 0 0

6 0 0 0 0 0 1 0 1 0 0

7 0 1 0 0 0 0 1 0 0 0

8 1 0 1 0 0 0 0 0 0 1

9 0 1 0 0 0 0 0 0 1 0

Graph & BFS / Slide 12

Adjacency List Example

2

4

3

5

1

7
6

9

8

0 0

1

2

3

4

5

6

7

8

9

2 3 7 9

8

1 4 8

1 4 5

2 3

3 6

5 7

1 6

0 2 9

1 8

Graph & BFS / Slide 13

 The array takes up Θ(n) space
 Define degree of v, deg(v), to be the number of edges incident to

v. Then, the total space to store the graph is proportional to:

 An edge e={u,v} of the graph contributes a count of 1 to deg(u)
and contributes a count 1 to deg(v)

 Therefore, Σvertex vdeg(v) = 2m, where m is the total number of
edges

 In all, the adjacency list takes up Θ(n+m) space
 If m = O(n2) (i.e. dense graphs), both adjacent matrix and adjacent

lists use Θ(n2) space.
 If m = O(n), adjacent list outperforms adjacent matrix

 However, one cannot tell in O(1) time whether two vertices are
connected

Storage of Adjacency List

v

v
vertex

)deg(

Graph & BFS / Slide 14

Adjacency List vs. Matrix
 Adjacency List

 More compact than adjacency matrices if graph has few edges
 Requires more time to find if an edge exists

 Adjacency Matrix
 Always require n2 space

This can waste a lot of space if the number of edges are sparse
 Can quickly find if an edge exists
 It’s a matrix, some algorithms can be solved by matrix computation!

Graph & BFS / Slide 15

Path between Vertices
 A path is a sequence of vertices (v0, v1, v2,… vk) such

that:
 For 0 ≤ i < k, {vi, vi+1} is an edge
 For 0 ≤ i < k-1, vi ≠ vi+2

That is, the edge {vi, vi+1} ≠ {vi+1, vi+2}

Note: a path is allowed to go through the same vertex or the same edge any
number of times!

 The length of a path is the number of edges on the
path

Graph & BFS / Slide 16

Types of paths

 A path is simple if and only if it does not
contain a vertex more than once.

 A path is a cycle if and only if v0= vk

The beginning and end are the same vertex!

 A path contains a cycle as its sub-path if some vertex
appears twice or more

Graph & BFS / Slide 17

Path Examples

1. {a,c,f,e}

2. {a,b,d,c,f,e}

3. {a, c, d, b, d, c, f, e}

4. {a,c,d,b,a}

5. {a,c,f,e,b,d,c,a}

Are these paths?

Any cycles?

What is the path’s length?

Graph & BFS / Slide 18

Summary
 A graph G=(V, E) consists a set of vertices, V, and a

set of edges, E. Each edge is a pair of (v, w), where v,
w belongs to V

 graph, directed and undirected graph
 vertex, node, edge, arc
 incident, adjacent
 degree, in-degree, out-degree, isolated
 path, simple path,
 path of length k, subpath
 cycle, simple cycle, acyclic
 connected, connected component
 neighbor, complete graph, planar graph

Graph & BFS / Slide 19

Graph Traversal
 Application example

 Given a graph representation and a vertex s in the graph
 Find all paths from s to other vertices

 Two common graph traversal algorithms
 Breadth-First Search (BFS)

 Find the shortest paths in an unweighted graph
 Depth-First Search (DFS)

 Topological sort
 Find strongly connected components

Graph & BFS / Slide 20

BFS and Shortest Path Problem
 Given any source vertex s, BFS visits the other vertices at increasing

distances away from s. In doing so, BFS discovers paths from s to other
vertices

 What do we mean by “distance”? The number of edges on a path from s
 From ‘local’ to ‘global’, step by step.

2

4

3

5

1

7
6

9

8

0
Consider s=vertex 1

Nodes at distance 1?
 2, 3, 7, 91

1

1

1
2

22

2

s

Example

Nodes at distance 2?
 8, 6, 5, 4

Nodes at distance 3?
 0

Graph & BFS / Slide 21

BFS Algorithm

Why use queue? Need FIFO
// flag[]: visited table

Graph & BFS / Slide 22

BFS Example

2

4

3

5

1

7
6

9

8

0

Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)

F

F

F

F

F

F

F

F

F

F

Q = { }

Initialize visited
table (all False)

Initialize Q to be empty

Graph & BFS / Slide 23

2

4

3

5

1

7
6

9

8

0

Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)

F

F

T

F

F

F

F

F

F

F

Q = { 2 }

Flag that 2 has
been visited

Place source 2 on the queue

Graph & BFS / Slide 24

2

4

3

5

1

7
6

9

8

0

Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)

F

T

T

F

T

F

F

F

T

F

Q = {2} → { 8, 1, 4 }

Mark neighbors
as visited 1, 4, 8

Dequeue 2.
Place all unvisited neighbors of 2 on the queue

Neighbors

Graph & BFS / Slide 25

2

4

3

5

1

7
6

9

8

0

Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)

T

T

T

F

T

F

F

F

T

T

Q = { 8, 1, 4 } → { 1, 4, 0, 9 }

Mark new visited
Neighbors 0, 9

Dequeue 8.
 -- Place all unvisited neighbors of 8 on the queue.
 -- Notice that 2 is not placed on the queue again, it has been visited!

Neighbors

Graph & BFS / Slide 26

2

4

3

5

1

7
6

9

8

0

Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)

T

T

T

T

T

F

F

T

T

T

Q = { 1, 4, 0, 9 } → { 4, 0, 9, 3, 7 }

Mark new visited
Neighbors 3, 7

Dequeue 1.
 -- Place all unvisited neighbors of 1 on the queue.
 -- Only nodes 3 and 7 haven’t been visited yet.

Neighbors

Graph & BFS / Slide 27

2

4

3

5

1

7
6

9

8

0

Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)

T

T

T

T

T

F

F

T

T

T

Q = { 4, 0, 9, 3, 7 } → { 0, 9, 3, 7 }

Dequeue 4.
 -- 4 has no unvisited neighbors!

Neighbors

Graph & BFS / Slide 28

2

4

3

5

1

7
6

9

8

0

Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)

T

T

T

T

T

F

F

T

T

T

Q = { 0, 9, 3, 7 } → { 9, 3, 7 }

Dequeue 0.
 -- 0 has no unvisited neighbors!

Neighbors

Graph & BFS / Slide 29

2

4

3

5

1

7
6

9

8

0

Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)

T

T

T

T

T

F

F

T

T

T

Q = { 9, 3, 7 } → { 3, 7 }

Dequeue 9.
 -- 9 has no unvisited neighbors!

Neighbors

Graph & BFS / Slide 30

2

4

3

5

1

7
6

9

8

0

Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)

T

T

T

T

T

T

F

T

T

T

Q = { 3, 7 } → { 7, 5 }

Dequeue 3.
 -- place neighbor 5 on the queue.

Neighbors

Mark new visited
Vertex 5

Graph & BFS / Slide 31

2

4

3

5

1

7
6

9

8

0

Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)

T

T

T

T

T

T

T

T

T

T

Q = { 7, 5 } → { 5, 6 }

Dequeue 7.
 -- place neighbor 6 on the queue

Neighbors

Mark new visited
Vertex 6

Graph & BFS / Slide 32

2

4

3

5

1

7
6

9

8

0

Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)

T

T

T

T

T

T

T

T

T

T

Q = { 5, 6} → { 6 }

Dequeue 5.
 -- no unvisited neighbors of 5

Neighbors

Graph & BFS / Slide 33

2

4

3

5

1

7
6

9

8

0

Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)

T

T

T

T

T

T

T

T

T

T

Q = { 6 } → { }

Dequeue 6.
 -- no unvisited neighbors of 6

Neighbors

Graph & BFS / Slide 34

2

4

3

5

1

7
6

9

8

0

Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)

T

T

T

T

T

T

T

T

T

T

Q = { }

STOP!!! Q is empty!!!

What did we discover?

Look at “visited” tables.

There exists a path from source
vertex 2 to all vertices in the graph

Graph & BFS / Slide 35

Time Complexity of BFS
(Using Adjacency List)

 Assume adjacency list
 n = number of vertices m = number of edges

Each vertex will enter Q
at most once.

Each iteration takes time
proportional to deg(v) + 1 (the
number 1 is to account for the
case where deg(v) = 0 --- the
work required is 1, not 0).

O(n + m)

Graph & BFS / Slide 36

Running Time

 Recall: Given a graph with m edges, what is
the total degree?

 The total running time of the while loop is:

 this is summing over all the iterations in the
while loop!

O(Σvertex v (deg(v) + 1)) = O(n+m)

 Σvertex v deg(v) = 2m

Graph & BFS / Slide 37

Time Complexity of BFS
(Using Adjacency Matrix)

 Assume adjacency list
 n = number of vertices m = number of edges

Finding the adjacent vertices of v
requires checking all elements in the
row. This takes linear time O(n).

Summing over all the n iterations, the
total running time is O(n2).

O(n2)

So, with adjacency matrix, BFS is O(n2)
independent of the number of edges m.
With adjacent lists, BFS is O(n+m); if
m=O(n2) like in a dense graph,
O(n+m)=O(n2).

	Graph & BFS
	Graphs
	Application 1
	Application 2
	Slide 5
	Definition
	Terminology
	Graph Representation
	Adjacency Matrix
	Adjacency List
	Adjacency Matrix Example
	Adjacency List Example
	Storage of Adjacency List
	Adjacency List vs. Matrix
	Path between Vertices
	Types of paths
	Path Examples
	Summary
	Graph Traversal
	BFS and Shortest Path Problem
	BFS Algorithm
	BFS Example
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Time Complexity of BFS (Using Adjacency List)
	Running Time
	Time Complexity of BFS (Using Adjacency Matrix)

