

Depth-First Search

COMP171

Graph / Slide 2

Summary of BFS

 Graph and representations
 BFS, and BFS tree
 Complexity of BFS

Graph / Slide 3

Two representations:
Adjacency List vs. Matrix

 Two sizes: n = |V| and m=|E|,
 m = O(n^2)

 Adjacency List
 More compact than adjacency matrices if graph has few edges

 Requires a scan of adjacency list to check if an edge exists
 Requires a scan to obtain all edges!

 Adjacency Matrix
 Always require n2 space

This can waste a lot of space if the number of edges are sparse

 find if an edge exists in O(1)
 Obtain all edges in O(n)

Graph / Slide 4

BFS Tree

BFS tree for vertex s=2.

Graph / Slide 5

Time Complexity of BFS
(Using Adjacency List)

Each vertex will enter Q
at most once.

Each iteration takes time
proportional to deg(v) + 1 (the
number 1 is to account for the
case where deg(v) = 0 --- the
work required is 1, not 0).

O(n + m)

Graph / Slide 6

Time Complexity of BFS
(Using Adjacency Matrix)

Finding the adjacent vertices of v
requires checking all elements in the
row. This takes linear time O(n).

Summing over all the n iterations, the
total running time is O(n2).

O(n2)

So, with adjacency matrix, BFS is O(n2)
independent of the number of edges m.
With adjacent lists, BFS is O(n+m); if
m=O(n2) like in a dense graph,
O(n+m)=O(n2).

Graph / Slide 7

Depth-First Search (DFS)
 DFS is another popular graph search strategy

 Idea is similar to pre-order traversal (visit node,
then visit children recursively)

 DFS can provide certain information about
the graph that BFS cannot
 It can tell whether we have encountered a cycle or

not

Graph / Slide 8

DFS Algorithm

 DFS will continue to visit neighbors in a
recursive pattern
 Whenever we visit v from u, we recursively visit all

unvisited neighbors of v. Then we backtrack
(return) to u.

 Note: it is possible that w2 was unvisited when we
recursively visit w1, but became visited by the time
we return from the recursive call.

u

v

w1 w2

w3

Graph / Slide 9

DFS Algorithm

Flag all vertices as not
visited

Flag yourself as visited

For unvisited neighbors,
call RDFS(w) recursively

We can also record the paths using pred[].

Graph / Slide 10

Example

2

4

3

5

1

7
6

9

8

0
Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)

F

F

F

F

F

F

F

F

F

F

Initialize visited
table (all False)

Initialize Pred to -1

-

-

-

-

-

-

-

-

-

-

Pred

Graph / Slide 11

2

4

3

5

1

7
6

9

8

0

Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)

F

F

T

F

F

F

F

F

F

F

Mark 2 as visited

-

-

-

-

-

-

-

-

-

-

Pred

RDFS(2)
Now visit RDFS(8)

Graph / Slide 12

2

4

3

5

1

7
6

9

8

0
Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)

F

F

T

F

F

F

F

F

T

F

Mark 8 as visited

mark Pred[8]

-

-

-

-

-

-

-

-

2

-

Pred

RDFS(2)
 RDFS(8)

2 is already visited, so visit RDFS(0)

Recursive
calls

Graph / Slide 13

2

4

3

5

1

7
6

9

8

0
Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)

T

F

T

F

F

F

F

F

T

F

Mark 0 as visited

Mark Pred[0]

8

-

-

-

-

-

-

-

2

-

Pred

RDFS(2)
 RDFS(8)

RDFS(0) -> no unvisited neighbors, return
 to call RDFS(8)

Recursive
calls

Graph / Slide 14

2

4

3

5

1

7
6

9

8

0
Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)

T

F

T

F

F

F

F

F

T

F

8

-

-

-

-

-

-

-

2

-

Pred

RDFS(2)
 RDFS(8)

Now visit 9 -> RDFS(9)

Recursive
calls

Back to 8

Graph / Slide 15

2

4

3

5

1

7
6

9

8

0
Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)

T

F

T

F

F

F

F

F

T

T

Mark 9 as visited

Mark Pred[9]

8

-

-

-

-

-

-

-

2

8

Pred

RDFS(2)
 RDFS(8)

RDFS(9)
 -> visit 1, RDFS(1)

Recursive
calls

Graph / Slide 16

2

4

3

5

1

7
6

9

8

0
Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)

T

T

T

F

F

F

F

F

T

T

Mark 1 as visited

Mark Pred[1]

8

9

-

-

-

-

-

-

2

8

Pred

RDFS(2)
 RDFS(8)

RDFS(9)
 RDFS(1)

visit RDFS(3)

Recursive
calls

Graph / Slide 17

2

4

3

5

1

7
6

9

8

0
Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)

T

T

T

T

F

F

F

F

T

T

Mark 3 as visited

Mark Pred[3]

8

9

-

1

-

-

-

-

2

8

Pred

RDFS(2)
 RDFS(8)

RDFS(9)
 RDFS(1)

RDFS(3)
 visit RDFS(4)

Recursive
calls

Graph / Slide 18

RDFS(2)
 RDFS(8)

RDFS(9)
 RDFS(1)

RDFS(3)
 RDFS(4) STOP all of 4’s neighbors have been visited
 return back to call RDFS(3)

2

4

3

5

1

7
6

9

8

0
Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)

T

T

T

T

T

F

F

F

T

T

Mark 4 as visited

Mark Pred[4]

8

9

-

1

3

-

-

-

2

8

Pred

Recursive
calls

Graph / Slide 19

2

4

3

5

1

7
6

9

8

0
Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)

T

T

T

T

T

F

F

F

T

T

8

9

-

1

3

-

-

-

2

8

Pred
RDFS(2)
 RDFS(8)

RDFS(9)
 RDFS(1)

RDFS(3)
 visit 5 -> RDFS(5)

Recursive
calls

Back to 3

Graph / Slide 20

2

4

3

5

1

7
6

9

8

0
Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)

T

T

T

T

T

T

F

F

T

T

8

9

-

1

3

3

-

-

2

8

Pred
RDFS(2)
 RDFS(8)

RDFS(9)
 RDFS(1)

RDFS(3)
 RDFS(5)
 3 is already visited, so visit 6 -> RDFS(6)

Recursive
calls

Mark 5 as visited

Mark Pred[5]

Graph / Slide 21

2

4

3

5

1

7
6

9

8

0
Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)

T

T

T

T

T

T

T

F

T

T

8

9

-

1

3

3

5

-

2

8

PredRDFS(2)
 RDFS(8)

RDFS(9)
 RDFS(1)

RDFS(3)
 RDFS(5)
 RDFS(6)
 visit 7 -> RDFS(7)

Recursive
calls

Mark 6 as visited

Mark Pred[6]

Graph / Slide 22

2

4

3

5

1

7
6

9

8

0
Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)

T

T

T

T

T

T

T

T

T

T

8

9

-

1

3

3

5

6

2

8

PredRDFS(2)
 RDFS(8)

RDFS(9)
 RDFS(1)

RDFS(3)
 RDFS(5)
 RDFS(6)
 RDFS(7) -> Stop no more unvisited neighbors

Recursive
calls

Mark 7 as visited

Mark Pred[7]

Graph / Slide 23

Adjacency List

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)

T

T

T

T

T

T

T

T

T

T

8

9

-

1

3

3

5

6

2

8

PredRDFS(2)
 RDFS(8)

RDFS(9)
 RDFS(1)

RDFS(3)
 RDFS(5)
 RDFS(6) -> Stop

Recursive
calls

2

4

3

5

1

7
6

9

8

0

source

Graph / Slide 24

Adjacency List

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)

T

T

T

T

T

T

T

T

T

T

8

9

-

1

3

3

5

6

2

8

PredRDFS(2)
 RDFS(8)

RDFS(9)
 RDFS(1)

RDFS(3)
 RDFS(5) -> Stop

Recursive
calls

2

4

3

5

1

7
6

9

8

0

source

Graph / Slide 25

Adjacency List

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)

T

T

T

T

T

T

T

T

T

T

8

9

-

1

3

3

5

6

2

8

PredRDFS(2)
 RDFS(8)

RDFS(9)
 RDFS(1)

RDFS(3) -> Stop

Recursive
calls

2

4

3

5

1

7
6

9

8

0

source

Graph / Slide 26

Adjacency List

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)

T

T

T

T

T

T

T

T

T

T

8

9

-

1

3

3

5

6

2

8

PredRDFS(2)
 RDFS(8)

RDFS(9)
 RDFS(1) -> Stop

Recursive
calls

2

4

3

5

1

7
6

9

8

0

source

Graph / Slide 27

Adjacency List

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)

T

T

T

T

T

T

T

T

T

T

8

9

-

1

3

3

5

6

2

8

PredRDFS(2)
 RDFS(8)

RDFS(9) -> Stop

Recursive
calls

2

4

3

5

1

7
6

9

8

0

source

Graph / Slide 28

Adjacency List

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)

T

T

T

T

T

T

T

T

T

T

8

9

-

1

3

3

5

6

2

8

PredRDFS(2)
 RDFS(8) -> Stop

Recursive
calls

2

4

3

5

1

7
6

9

8

0

source

Graph / Slide 29

Example Finished
Adjacency List

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)

T

T

T

T

T

T

T

T

T

T

8

9

-

1

3

3

5

6

2

8

PredRDFS(2) -> Stop

Recursive calls finished

2

4

3

5

1

7
6

9

8

0

source

Graph / Slide 30

DFS Path Tracking
Adjacency List

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)

T

T

T

T

T

T

T

T

T

T

8

9

-

1

3

3

5

6

2

8

Pred

Try some examples.
Path(0) ->
Path(6) ->
Path(7) ->

DFS find out path too

2

4

3

5

1

7
6

9

8

0

source

Graph / Slide 31

DFS Tree
Resulting DFS-tree.
Notice it is much “deeper”
than the BFS tree.

Captures the structure of the
recursive calls
- when we visit a neighbor w of v,
we add w as child of v
- whenever DFS returns from a
vertex v, we climb up in the tree
from v to its parent

Graph / Slide 32

Time Complexity of DFS
(Using adjacency list)

 We never visited a vertex more than once

 We had to examine all edges of the vertices
 We know Σvertex v degree(v) = 2m where m is the number of edges

 So, the running time of DFS is proportional to the number
of edges and number of vertices (same as BFS)
 O(n + m)

 You will also see this written as:
 O(|v|+|e|) |v| = number of vertices (n) |e| = number of

edges (m)

	Depth-First Search
	Summary of BFS
	Two representations: Adjacency List vs. Matrix
	BFS Tree
	Time Complexity of BFS (Using Adjacency List)
	Time Complexity of BFS (Using Adjacency Matrix)
	Depth-First Search (DFS)
	DFS Algorithm
	Slide 9
	Example
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Example Finished
	DFS Path Tracking
	DFS Tree
	Time Complexity of DFS (Using adjacency list)

