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Summary of BFS

 Graph and representations
 BFS, and BFS tree
 Complexity of BFS
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Two representations:
Adjacency List vs. Matrix

 Two sizes: n = |V|   and  m=|E|,
 m = O(n^2)

 Adjacency List
 More compact than adjacency matrices if graph has few edges

 Requires a scan of adjacency list to check  if an edge exists
 Requires a scan to obtain all edges!

 Adjacency Matrix
 Always require n2 space

This can waste a lot of space if the number of edges are sparse

  find if an edge exists in O(1)
 Obtain all edges in O(n)
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BFS Tree

BFS tree for vertex s=2.
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Time Complexity of BFS
(Using Adjacency List)

Each vertex will enter Q 
at most once.

Each iteration takes time 
proportional to deg(v) + 1  (the 
number 1 is to account for the 
case where deg(v) = 0 --- the 
work required is 1, not 0).

O(n + m)
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Time Complexity of BFS
(Using Adjacency Matrix)

Finding the adjacent vertices of v 
requires checking all elements in the 
row. This takes linear time O(n).

Summing over all the n iterations, the 
total running time is O(n2).

O(n2)

So, with adjacency matrix, BFS is O(n2) 
independent of the number of edges m.  
With adjacent lists, BFS is O(n+m); if 
m=O(n2) like in a dense graph, 
O(n+m)=O(n2).
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Depth-First Search (DFS)
  DFS is another popular graph search strategy

 Idea is similar to pre-order traversal (visit node, 
then visit children recursively)

  DFS can provide certain information about 
the graph that BFS cannot
 It can tell whether we have encountered a cycle or 

not
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DFS Algorithm

 DFS will continue to visit neighbors in a 
recursive pattern
 Whenever we visit v from u, we recursively visit all 

unvisited neighbors of v.  Then we backtrack 
(return) to u.

 Note: it is possible that w2 was unvisited when we 
recursively visit w1, but became visited by the time 
we return from the recursive call.

u

v

w1 w2

w3
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DFS Algorithm

Flag all vertices as not
visited

Flag yourself as visited

For unvisited neighbors,
call RDFS(w) recursively

We can also record the paths using pred[ ].
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Example Finished
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DFS Path Tracking
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DFS Tree
Resulting DFS-tree.
Notice it is much “deeper”
than the BFS tree.

Captures the structure of the 
recursive calls
- when we visit a neighbor w of v, 
we add w as child of v
- whenever DFS returns from a 
vertex v, we climb up in the tree 
from v to its parent
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Time Complexity of DFS
(Using adjacency list)

 We never visited a vertex more than once

 We had to examine all edges of the vertices
 We know Σvertex v degree(v) = 2m  where m is the number of edges

 So, the running time of DFS is proportional to the number 
of edges and number of vertices (same as BFS)
 O(n + m)

 You will also see this written as:
 O(|v|+|e|) |v| = number of vertices (n)  |e| = number of 

edges   (m)
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