Depth-First Search

Summary of BFS

\square Graph and representations
\square BFS, and BFS tree

- Complexity of BFS

Adjacency List vs. Matrix

[Two sizes: $\mathbf{n}=|\mathbf{V}|$ and $\mathbf{m}=\mid$ 티,

- $\mathrm{m}=\mathrm{O}\left(\mathrm{n}^{\wedge} 2\right)$

〕 Adjacency List

- More compact than adjacency matrices if graph has few edges
- Requires a scan of adjacency list to check if an edge exists
- Requires a scan to obtain all edges!

〕 Adjacency Matrix

- Always require n^{2} space
\square This can waste a lot of space if the number of edges are sparse
\square find if an edge exists in $\mathrm{O}(1)$
- Obtain all edges in O(n)

BFS Tree

BFS tree for vertex $\mathrm{s}=2$.

Time Complexity of BFS (Using Adjacency List)

Algorithm BFS(s)
Input: s is the source vertex
Output: Mark all vertices that can be visited from s.

1. for each vertex v
2. do flag $[v]:=$ false;
3. $\quad Q=$ empty queue;
4. flag $[s]:=$ true;
5. enqueue (Q, s);
6. while Q is not empty
7. do $v:=\operatorname{dequeue}(Q)$;
8. for each w adjacent to v
9. \quad do if $f l a g[w]=$ false
10.
11. then $\operatorname{flag}[w]:=$ true; enqueue (Q, w)

O(n + m)

Each vertex will enter Q

 at most once.Each iteration takes time proportional to $\operatorname{deg}(\mathrm{v})+1$ (the number 1 is to account for the case where $\operatorname{deg}(v)=0$--- the work required is 1 , not 0).

Time Complexity of BFS (Using Adjacency Matrix)

```
Algorithm BFS(s)
Input: s is the source vertex
Output: Mark all vertices that can be visited from s.
1. for each vertex v
2. do flag[v] := false;
3. Q = empty queue;
4. flag[s]:= true;
5. enqueue( }Q,s)\mathrm{ ;
6. while Q is not empty
7. do v}:=\mathrm{ dequeue (Q);
8. for each w adjacent to v
9. do if flag[w] = false
10. then flag[w] := true;
11.
enqueue(Q,w)
```


$O\left(n^{2}\right)$

Finding the adjacent vertices of v requires checking all elements in the row. This takes linear time $O(n)$.

Summing over all the n iterations, the total running time is $\mathrm{O}\left(\mathrm{n}^{2}\right)$.
So, with adjacency matrix, BFS is $\mathrm{O}\left(\mathrm{n}^{2}\right)$ independent of the number of edges m. With adjacent lists, BFS is $\mathrm{O}(\mathrm{n}+\mathrm{m})$; if $\mathrm{m}=\mathrm{O}\left(\mathrm{n}^{2}\right)$ like in a dense graph, $\mathrm{O}(\mathrm{n}+\mathrm{m})=\mathrm{O}\left(\mathrm{n}^{2}\right)$.

Depth-First Search (DFS)

[DFS is another popular graph search strategy
] Idea is similar to pre-order traversal (visit node, then visit children recursively)

- DFS can provide certain information about the graph that BFS cannot
- It can tell whether we have encountered a cycle or not

DFS Algorithm

(DFS will continue to visit neighbors in a recursive pattern
[Whenever we visit v from u, we recursively visit all unvisited neighbors of v . Then we backtrack (return) to u.
(Note: it is possible that w2 was unvisited when we recursively visit w1, but became visited by the time we return from the recursive call.

DFS Algorithm

Algorithm $D F S(s)$

1. for each vertex v
2. \quad do flag $[v]:=$ false;
3. $R D F S(s) ;$

Algorithm RDFS(v)

1. flag[v] := true;
2. for each neighbor w of v
3.
4. do if $\operatorname{flag}[w]=$ false then RDFS (w);

Flag all vertices as not visited

Flag yourself as visited

For unvisited neighbors, call RDFS(w) recursively

We can also record the paths using pred[].

Example

Adjacency List Visited Table (T/F)

0	F
1	F
2	F
3	F
4	F
5	F
6	F
7	F
8	F
9	F

Initialize visited table (all False)

Initialize Pred to -1

RDFS(2) Now visit RDFS(8)

Recursive RDFS(2) calls RDFS(8)
 Now visit 9 -> RDFS(9)

Adjacency List Visited Table (T/F)

0	T
1	T
2	T
3	T
4	T
5	F
6	F
7	F
8	T
9	T

8
9
-
1
3
-
-
-
2
8
Pred

Mark 4 as visited
Mark Pred[4]

Recursive	RDFS(8)
calls	RDFS(9)
	RDFS(1)

RDFS 2)

Recursive	RDFS(8)
calls	RDFS(9)
	RDFS(1)

Mark 5 as visited
Mark Pred[5]
RDFS(3) RDFS(5)

3 is already visited, so visit 6 -> RDFS(6)

Adjacency List

Visited Table (T/F)

0	T
1	T
2	T
3	T
4	T
5	T
6	T
7	T
8	T
9	T

8
9
-
1
3
3
5
6
2
8

Recursive calls

RDFS(9)
RDFS(1)
RDFS(3) RDFS(5) -> Stop

Adjacency List

Visited Table (T/F)

0	T
1	T
2	T
3	T
4	T
5	T
6	T
7	T
8	T
9	T

8
9
-
1
3
3
5
6
2
8

Pred

Recursive calls

RDFS(9)
RDFS(1)
RDFS(3) -> Stop

Example Finished

RDFS(2) -> Stop

Adjacency List

Visited Table (T/F)

0	T
1	T
2	T
3	T
4	T
5	T
6	T
7	T
8	T
9	T

8
9
-
1
3
3
5
6
2
8

Pred

Recursive calls finished

DFS Path Tracking

Adjacency List

Visited Table (T/F)

0	T
1	T
2	T
3	T
4	T
5	T
6	T
7	T
8	T
9	T

8
9
-
1
3
3
5
6
2
8

Pred

Algorithm Path (w)

1. if $\operatorname{pred}[w] \neq-1$
2. then
3.

Path(pred $[w]$);
4. output w

Try some examples.
Path(0) ->
Path(6) ->
Path(7) ->

DFS Tree

Resulting DFS-tree.
Notice it is much "deeper" than the BFS tree.

Captures the structure of the recursive calls

- when we visit a neighbor w of v, we add w as child of v
- whenever DFS returns from a vertex v, we climb up in the tree from v to its parent

Time Complexity of DFS
 (Using adjacency list)

[We never visited a vertex more than once

- We had to examine all edges of the vertices
\square We know $\Sigma_{\text {vertex } v}$ degree(v) $=2 \mathrm{~m}$ where m is the number of edges
- So, the running time of DFS is proportional to the number of edges and number of vertices (same as BFS)
- O(n + m)
\square You will also see this written as:
[$\mathrm{O}(|\mathrm{v}|+|\mathrm{e}|)|\mathrm{v}|=$ number of vertices (n)
$|e|=$ number of edges (m)

