
Connected Components,
Directed Graphs,
Topological Sort

COMP171

Graph / Slide 2

Graph Application: Connectivity

D
E

A
C

F
B

G
K

H

L
N

M

O
R

Q
P

s

How do we tell if two vertices
are connected?

A connected to F?
A connected to L?

G =

Graph / Slide 3

Connectivity
 A graph is connected if and only if there exists a path

between every pair of distinct vertices.

 A graph is connected if and only if there exists a simple path
between every pair of distinct vertices
 since every non-simple path contains a cycle, which can be bypassed

 How to check for connectivity?
 Run BFS or DFS (using an arbitrary vertex as the source)
 If all vertices have been visited, the graph is connected.
 Running time? O(n + m)

Graph / Slide 4

Connected Components

Graph / Slide 5

Subgraphs

Graph / Slide 6

Connected Components
 Formal definition

 A connected component is a maximal connected
subgraph of a graph

 The set of connected components is unique for a
given graph

Graph / Slide 7

Finding Connected Components

For each vertex

Call DFS
This will find all vertices
connected to “v” => one
connected component

Basic DFS algorithm

If not visited

Graph / Slide 8

Time Complexity
 Running time for each i connected component

 Running time for the graph G

 Reason: Can two connected components share
 the same edge?
 the same vertex?

)(ii mnO

i

i
i

i
i

ii mnOmnOmnO)()()(

Graph / Slide 9

Trees

 Tree arises in many computer science applications

 A graph G is a tree if and only if it is connected
and acyclic
 (Acyclic means it does not contain any simple cycles)

 The following statements are equivalent
 G is a tree
 G is acyclic and has exactly n-1 edges
 G is connected and has exactly n-1 edges

Graph / Slide 10

Tree Example

 Is it a graph?
 Does it contain cycles? In other words, is it acyclic?
 How many vertices?
 How many edges?

0

1
2

3

4
5

6

7

8

9

Graph / Slide 11

Directed Graph

 A graph is directed if direction is assigned to
each edge.

 Directed edges are denoted as arcs.
 Arc is an ordered pair (u, v)

 Recall: for an undirected graph
 An edge is denoted {u,v}, which actually

corresponds to two arcs (u,v) and (v,u)

Graph / Slide 12

Representations
 The adjacency matrix and adjacency list can be used

Graph / Slide 13

Directed Acyclic Graph

 A directed path is a sequence of vertices
(v0, v1, . . . , vk)
 Such that (vi, vi+1) is an arc

 A directed cycle is a directed path such that
the first and last vertices are the same.

 A directed graph is acyclic if it does not
contain any directed cycles

Graph / Slide 14

Indegree and Outdegree

 Since the edges are directed
 We can’t simply talk about Deg(v)

 Instead, we need to consider the arcs coming
“in” and going “out”
 Thus, we define terms Indegree(v), and

Outdegree(v)

 Each arc(u,v) contributes count 1 to the
outdegree of u and the indegree of v

mvv
v

)(outdegree)(indegree
vertex

Graph / Slide 15

Calculate Indegree and Outdegree

 Outdegree is simple to compute
 Scan through list Adj[v] and count the arcs

 Indegree calculation
 First, initialize indegree[v]=0 for each vertex v
 Scan through adj[v] list for each v

For each vertex w seen, indegree[w]++;
Running time: O(n+m)

Graph / Slide 16

Example

0

1
2

3

4
5

6

7

8

9

Indeg(2)?

Indeg(8)?

Outdeg(0)?

Num of Edges?

Total OutDeg?

Total Indeg?

Graph / Slide 17

Directed Graphs Usage
 Directed graphs are often used to represent order-

dependent tasks
 That is we cannot start a task before another task finishes

 We can model this task dependent constraint using arcs
 An arc (i,j) means task j cannot start until task i is finished

 Clearly, for the system not to hang, the graph must be
acyclic

i j

Task j cannot start
until task i is finished

Graph / Slide 18

University Example
 CS departments course structure

171151 180

211 251

272

271 252M132M111

231

201

221

361

362

381303

327
336

341

343

342

332

334

104

How many indeg(171)?
How many outdeg(171)?

Any directed cycles?

Graph / Slide 19

Topological Sort
 Topological sort is an algorithm for a directed acyclic

graph
 Linearly order the vertices so that the linear order

respects the ordering relations implied by the arcs

0
1

2

3

4
5

6

7

8

9

For example:

0, 1, 2, 5, 9
0, 4, 5, 9
0, 6, 3, 7 ?

It may not be unique as they are many ‘equal’ elements!

Graph / Slide 20

Topological Sort Algorithm
 Observations

 Starting point must have zero indegree
 If it doesn’t exist, the graph would not be acyclic

 Algorithm
1. A vertex with zero indegree is a task that can start right

away. So we can output it first in the linear order
2. If a vertex i is output, then its outgoing arcs (i, j) are no

longer useful, since tasks j does not need to wait for i
anymore- so remove all i’s outgoing arcs

3. With vertex i removed, the new graph is still a directed
acyclic graph. So, repeat step 1-2 until no vertex is left.

Graph / Slide 21

Topological Sort

Find all starting points

Reduce indegree(w)

Place new start
vertices on the Q

Take all outgoing arcs, all ‘w’s

Graph / Slide 22

Example

0
1

2

3

4
5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

2

6 1 4

7 5

8

5

3 2

8

9

9

0

1

2

3

4

5

6

7

8

9

0

1

2

1

1

2

1

1

2

2

Indegree

start

Q = { 0 }

OUTPUT: 0

Graph / Slide 23

0
1

2

3

4
5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

2

6 1 4

7 5

8

5

3 2

8

9

9

0

1

2

3

4

5

6

7

8

9

0

1

2

1

1

2

1

1

2

2

Indegree

Dequeue 0 Q = { }
 -> remove 0’s arcs – adjust
 indegrees of neighbors

OUTPUT: 0

Decrement 0’s
neighbors

-1

-1

-1

Graph / Slide 24

0
1

2

3

4
5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

2

6 1 4

7 5

8

5

3 2

8

9

9

0

1

2

3

4

5

6

7

8

9

0

0

2

1

0

2

0

1

2

2

Indegree

Q = { 6, 1, 4 }
 Enqueue all starting points

OUTPUT: 0

Enqueue all
new start points

Graph / Slide 25

1
2

3

4
5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

2

6 1 4

7 5

8

5

3 2

8

9

9

0

1

2

3

4

5

6

7

8

9

0

0

2

1

0

2

0

1

2

2

Indegree

Dequeue 6 Q = { 1, 4 }
 Remove arcs .. Adjust indegrees
 of neighbors

OUTPUT: 0 6

Adjust neighbors
indegree

-1

-1

Graph / Slide 26

1
2

3

4
5

7

8

9

0

1

2

3

4

5

6

7

8

9

2

6 1 4

7 5

8

5

3 2

8

9

9

0

1

2

3

4

5

6

7

8

9

0

0

1

0

0

2

0

1

2

2

Indegree

Q = { 1, 4, 3 }
 Enqueue 3

OUTPUT: 0 6

Enqueue new
start

Graph / Slide 27

1
2

3

4
5

7

8

9

0

1

2

3

4

5

6

7

8

9

2

6 1 4

7 5

8

5

3 2

8

9

9

0

1

2

3

4

5

6

7

8

9

0

0

1

0

0

2

0

1

2

2

Indegree

Dequeue 1 Q = { 4, 3 }
 Adjust indegrees of neighbors

OUTPUT: 0 6 1

Adjust neighbors
of 1

-1

Graph / Slide 28

2

3

4
5

7

8

9

0

1

2

3

4

5

6

7

8

9

2

6 1 4

7 5

8

5

3 2

8

9

9

0

1

2

3

4

5

6

7

8

9

0

0

0

0

0

2

0

1

2

2

Indegree

Dequeue 1 Q = { 4, 3, 2 }
 Enqueue 2

OUTPUT: 0 6 1

Enqueue new
starting points

Graph / Slide 29

2

3

4
5

7

8

9

0

1

2

3

4

5

6

7

8

9

2

6 1 4

7 5

8

5

3 2

8

9

9

0

1

2

3

4

5

6

7

8

9

0

0

0

0

0

2

0

1

2

2

Indegree

Dequeue 4 Q = { 3, 2 }
 Adjust indegrees of neighbors

OUTPUT: 0 6 1 4

Adjust 4’s
neighbors

-1

Graph / Slide 30

2

3

5

7

8

9

0

1

2

3

4

5

6

7

8

9

2

6 1 4

7 5

8

5

3 2

8

9

9

0

1

2

3

4

5

6

7

8

9

0

0

0

0

0

1

0

1

2

2

Indegree

Dequeue 4 Q = { 3, 2 }
 No new start points found

OUTPUT: 0 6 1 4

NO new start
points

Graph / Slide 31

2

3

5

7

8

9

0

1

2

3

4

5

6

7

8

9

2

6 1 4

7 5

8

5

3 2

8

9

9

0

1

2

3

4

5

6

7

8

9

0

0

0

0

0

1

0

1

2

2

Indegree

Dequeue 3 Q = { 2 }
 Adjust 3’s neighbors

OUTPUT: 0 6 1 4 3

-1

Graph / Slide 32

2

5

7

8

9

0

1

2

3

4

5

6

7

8

9

2

6 1 4

7 5

8

5

3 2

8

9

9

0

1

2

3

4

5

6

7

8

9

0

0

0

0

0

1

0

1

1

2

Indegree

Dequeue 3 Q = { 2 }
 No new start points found

OUTPUT: 0 6 1 4 3

Graph / Slide 33

2

5

7

8

9

0

1

2

3

4

5

6

7

8

9

2

6 1 4

7 5

8

5

3 2

8

9

9

0

1

2

3

4

5

6

7

8

9

0

0

0

0

0

1

0

1

1

2

Indegree

Dequeue 2 Q = { }
 Adjust 2’s neighbors

OUTPUT: 0 6 1 4 3 2

-1

-1

Graph / Slide 34

5

7

8

9

0

1

2

3

4

5

6

7

8

9

2

6 1 4

7 5

8

5

3 2

8

9

9

0

1

2

3

4

5

6

7

8

9

0

0

0

0

0

0

0

0

1

2

Indegree

Dequeue 2 Q = { 5, 7 }
 Enqueue 5, 7

OUTPUT: 0 6 1 4 3 2

Graph / Slide 35

5

7

8

9

0

1

2

3

4

5

6

7

8

9

2

6 1 4

7 5

8

5

3 2

8

9

9

0

1

2

3

4

5

6

7

8

9

0

0

0

0

0

0

0

0

1

2

Indegree

Dequeue 5 Q = { 7 }
Adjust neighbors

OUTPUT: 0 6 1 4 3 2 5

-1

Graph / Slide 36

7

8

9

0

1

2

3

4

5

6

7

8

9

2

6 1 4

7 5

8

5

3 2

8

9

9

0

1

2

3

4

5

6

7

8

9

0

0

0

0

0

0

0

0

1

1

Indegree

Dequeue 5 Q = { 7 }
No new starts

OUTPUT: 0 6 1 4 3 2 5

Graph / Slide 37

7

8

9

0

1

2

3

4

5

6

7

8

9

2

6 1 4

7 5

8

5

3 2

8

9

9

0

1

2

3

4

5

6

7

8

9

0

0

0

0

0

0

0

0

1

1

Indegree

Dequeue 7 Q = { }
Adjust neighbors

OUTPUT: 0 6 1 4 3 2 5 7

-1

Graph / Slide 38

8

9

0

1

2

3

4

5

6

7

8

9

2

6 1 4

7 5

8

5

3 2

8

9

9

0

1

2

3

4

5

6

7

8

9

0

0

0

0

0

0

0

0

0

1

Indegree

Dequeue 7 Q = { 8 }
Enqueue 8

OUTPUT: 0 6 1 4 3 2 5 7

Graph / Slide 39

8

9

0

1

2

3

4

5

6

7

8

9

2

6 1 4

7 5

8

5

3 2

8

9

9

0

1

2

3

4

5

6

7

8

9

0

0

0

0

0

0

0

0

0

1

Indegree

Dequeue 8 Q = { }
 Adjust indegrees of neighbors

 OUTPUT: 0 6 1 4 3 2 5 7 8

-1

Graph / Slide 40

9

0

1

2

3

4

5

6

7

8

9

2

6 1 4

7 5

8

5

3 2

8

9

9

0

1

2

3

4

5

6

7

8

9

0

0

0

0

0

0

0

0

0

0

Indegree

Dequeue 8 Q = { 9 }
 Enqueue 9

Dequeue 9 Q = { }

 STOP – no neighbors

OUTPUT: 0 6 1 4 3 2 5 7 8 9

Graph / Slide 41

OUTPUT: 0 6 1 4 3 2 5 7 8 9

0
1

2

3

4
5

6

7

8

9

Is output topologically correct?

Graph / Slide 42

Topological Sort: Complexity
 We never visited a vertex more than one time

 For each vertex, we had to examine all outgoing
edges
 Σ outdegree(v) = m
 This is summed over all vertices, not per vertex

 So, our running time is exactly
 O(n + m)

Graph / Slide 43 Summary:
Two representations:

 Some definitions: …

 Two sizes: n = |V| and m=|E|,
 m = O(n^2)

 Adjacency List
 More compact than adjacency matrices if graph has few edges

 Requires a scan of adjacency list to check if an edge exists
 Requires a scan to obtain all edges!

 Adjacency Matrix
 Always require n2 space

 This can waste a lot of space if the number of edges are sparse

 find if an edge exists in O(1)
 Obtain all edges in O(n)

 O(n+m) for indegree for a DAG

Graph / Slide 44

RDFS(v)

v is visited

W = {unvisited neighbors of v}

for each w in W

RDFS(w)

BFS (queue)

s is visited

enqueue(Q,s)

while not-empty(Q)

v <- dequeue(Q)

W = {unvisited neighbors of v}

for each w in W

w is visited

enqueue(Q,w)

DFS (stack)

s is visited

push(S,s)

while not-empty(S)

v <- pop(S)

W = {unvisited neighbors of v}

for each w in W

w is visited

push(S,w)

(one), Two, (three)
algorithms:

Graph / Slide 45

Two applications

 For each non-visited vertex, run ‘connected
component’ (either BFS or DFS)
 For a connected component, list all vertices, find a

spanning tree (BFS tree or DFS tree)

 ‘Shortest paths’ and ‘topological sort’ (for DAG
only) are close to BFS

	Connected Components, Directed Graphs, Topological Sort
	Graph Application: Connectivity
	Connectivity
	Connected Components
	Subgraphs
	Slide 6
	Finding Connected Components
	Time Complexity
	Trees
	Tree Example
	Directed Graph
	Representations
	Directed Acyclic Graph
	Indegree and Outdegree
	Calculate Indegree and Outdegree
	Example
	Directed Graphs Usage
	University Example
	Topological Sort
	Topological Sort Algorithm
	Slide 21
	Slide 22
	PowerPoint Presentation
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Topological Sort: Complexity
	Summary: Two representations:
	(one), Two, (three) algorithms:
	Two applications

