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Graph Application: Connectivity
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Connectivity
 A graph is connected if and only if there exists a path 

between every pair of distinct vertices.

 A graph is connected if and only if there exists a simple path 
between every pair of distinct vertices 
 since every non-simple path contains a cycle, which can be bypassed

 How to check for connectivity?
 Run BFS or DFS (using an arbitrary vertex as the source)
 If all vertices have been visited, the graph is connected.
 Running time?  O(n + m)
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Connected Components
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Subgraphs
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Connected Components
 Formal definition

 A connected component is a maximal connected 
subgraph of a graph

 The set of connected components is unique for a 
given graph
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Finding Connected Components

For each vertex

Call DFS
This will find all vertices 
connected to “v” => one
connected component

Basic DFS algorithm 

If not visited
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Time Complexity
 Running time for each i connected component

 Running time for the graph G

 Reason: Can two connected components share 
 the same edge?
 the same vertex?
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Trees

 Tree arises in many computer science applications

 A graph G is a tree if and only if it is connected 
and acyclic
  (Acyclic means it does not contain any simple cycles)

 The following statements are equivalent
 G is a tree
 G is acyclic and has exactly n-1 edges
 G is connected and has exactly n-1 edges
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Tree Example

 Is it a graph?
 Does it contain cycles? In other words,  is it acyclic?
 How many vertices?
 How many edges?
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Directed Graph

 A graph is directed if direction is assigned to 
each edge.  

 Directed edges are denoted as arcs.
 Arc is an ordered pair (u, v) 

 Recall: for an undirected graph
 An edge is denoted {u,v}, which actually 

corresponds to two arcs (u,v) and (v,u) 
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Representations
 The adjacency matrix and adjacency list can be used
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Directed Acyclic Graph

 A directed path is a sequence of vertices 
(v0, v1, . . . , vk)
 Such that (vi, vi+1) is an arc

 A directed cycle is a directed path such that 
the first and last vertices are the same.

 A directed graph is acyclic if it does not 
contain any directed cycles
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Indegree and Outdegree

 Since the edges are directed
 We can’t simply talk about Deg(v)

 Instead, we need to consider the arcs coming  
“in” and going “out”
 Thus, we define terms Indegree(v), and 

Outdegree(v)

 Each arc(u,v) contributes count 1 to the 
outdegree of u and the indegree of v

mvv
v

 )(outdegree)(indegree
vertex 
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Calculate Indegree and Outdegree

 Outdegree is simple to compute
 Scan through list Adj[v] and count the arcs

 Indegree calculation
 First, initialize indegree[v]=0 for each vertex v
 Scan through adj[v] list for each v

For each vertex w seen, indegree[w]++;
Running time: O(n+m)
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Example

0

1
2

3

4
5

6

7

8

9

Indeg(2)?

Indeg(8)?

Outdeg(0)?

Num of Edges?

Total OutDeg?

Total Indeg?
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Directed Graphs Usage
 Directed graphs are often used to represent order-

dependent tasks
 That is we cannot start a task before another task finishes

 We can model this task dependent constraint using arcs
 An arc (i,j) means task j cannot start until task i is finished

 Clearly, for the system not to hang, the graph must be 
acyclic

i j

Task j cannot start 
until task i is finished
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University Example
 CS departments course structure 

171151 180

211 251

272

271 252M132M111

231

201

221

361

362

381303

327
336

341

343

342

332

334

104

How many indeg(171)?
How many outdeg(171)?

Any directed cycles?
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Topological Sort
 Topological sort is an algorithm for a directed acyclic 

graph
 Linearly order the vertices so that the linear order 

respects the ordering relations implied by the arcs
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For example:

0, 1, 2, 5, 9
0, 4, 5, 9
0, 6, 3, 7 ?

It may not be unique as they are many ‘equal’ elements!
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Topological Sort Algorithm
 Observations

 Starting point must have zero indegree
 If it doesn’t exist, the graph would not be acyclic

 Algorithm
1. A vertex with zero indegree is a task that can start right 

away.  So we can output it first in the linear order
2. If a vertex i is output, then its outgoing arcs (i, j) are no 

longer useful, since tasks j does not need to wait for i  
anymore- so remove all i’s outgoing arcs

3. With vertex i removed, the new graph is still a directed 
acyclic graph.  So, repeat step 1-2 until no vertex is left.
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Topological Sort

Find all starting points

Reduce indegree(w)

Place new start
vertices on the Q

Take all outgoing arcs, all ‘w’s
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Example
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OUTPUT:  0 6 1 4 3 2 5 7 8  9  
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Is output topologically correct?
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Topological Sort: Complexity
 We never visited a vertex more than one time

 For each vertex, we had to examine all outgoing 
edges
 Σ outdegree(v) = m
 This is summed over all vertices, not per vertex

 So, our running time is exactly
 O(n + m)
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Two representations:

 Some definitions: …

 Two sizes: n = |V|   and  m=|E|,
 m = O(n^2)

 Adjacency List
 More compact than adjacency matrices if graph has few edges

 Requires a scan of adjacency list to check  if an edge exists
 Requires a scan to obtain all edges!

 Adjacency Matrix
 Always require n2 space

 This can waste a lot of space if the number of edges are sparse

  find if an edge exists in O(1)
 Obtain all edges in O(n)

 O(n+m) for indegree for a DAG
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RDFS(v)

v is visited

W = {unvisited neighbors of v}

for each w in W

RDFS(w)

BFS (queue)

s is visited

enqueue(Q,s)

while not-empty(Q) 

v <- dequeue(Q)

W = {unvisited neighbors of v}

for each w in W

w is visited

enqueue(Q,w)

DFS (stack)

s is visited

push(S,s)

while not-empty(S) 

v <- pop(S)

W = {unvisited neighbors of v}

for each w in W

w is visited

push(S,w)

(one), Two, (three) 
algorithms: 
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Two applications

 For each non-visited vertex, run ‘connected 
component’ (either BFS or DFS)
 For a connected component, list all vertices, find a 

spanning tree (BFS tree or DFS tree)

 ‘Shortest paths’ and ‘topological sort’ (for DAG 
only)  are close to BFS
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