Connected Components, Directed Graphs, Topological Sort

Graph Application: Connectivity

Connectivity

- A graph is connected if and only if there exists a path between every pair of distinct vertices.

- A graph is connected if and only if there exists a simple path between every pair of distinct vertices
[since every non-simple path contains a cycle, which can be bypassed
[How to check for connectivity?
- Run BFS or DFS (using an arbitrary vertex as the source)

I If all vertices have been visited, the graph is connected.

- Running time? $\mathrm{O}(\mathrm{n}+\mathrm{m})$

Connected Components

Subgraphs

A graph $H\left(V_{H}, E_{H}\right)$ is a subgraph of $G\left(V_{G}, E_{G}\right)$ if and only if $V_{H} \subset V_{G}$ and $E_{H} \subset E_{G}$.

graph G

subgraph H_{1}

Connected Components

\square Formal definition

[A connected component is a maximal connected subgraph of a graph

- The set of connected components is unique for a given graph

Finding Connected Components

This will find all vertices connected to " v " => one connected component

Algorithm RDFS(v)

1. flag $[v]:=$ true;
2. output v;
3. for each neighbor w of v
4. do if $\operatorname{flag}[w]=$ false

Basic DFS algorithm
5. then $\operatorname{RDFS}(w)$;

Time Complexity

- Running time for each i connected component

$$
O\left(n_{i}+m_{i}\right)
$$

\square Running time for the graph G

$$
\sum_{i} O\left(n_{i}+m_{i}\right)=O\left(\sum_{i} n_{i}+\sum_{i} m_{i}\right)=O(n+m)
$$

[Reason: Can two connected components share
\square the same edge?
[the same vertex?

Trees

— Tree arises in many computer science applications

- A graph G is a tree if and only if it is connected and acyclic
(Acyclic means it does not contain any simple cycles)
\square The following statements are equivalent
- G is a tree
\square G is acyclic and has exactly $n-1$ edges
$\square G$ is connected and has exactly $n-1$ edges

Tree Example

[Is it a graph?

- Does it contain cycles? In other words, is it acyclic?
[How many vertices?
[How many edges?

Directed Graph

[A graph is directed if direction is assigned to each edge.
\square Directed edges are denoted as arcs.
\square Arc is an ordered pair (u, v)
\square Recall: for an undirected graph
\square An edge is denoted $\{u, v\}$, which actually corresponds to two arcs (u, v) and (v, u)

Representations

- The adjacency matrix and adjacency list can be used

1. Adjacency Matrix

2. Adjacency List

Directed Acyclic Graph

- A directed path is a sequence of vertices ($\mathrm{v}_{0}, \mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{k}}$)
\square Such that $\left(v_{i}, v_{i+1}\right)$ is an arc
[A directed cycle is a directed path such that the first and last vertices are the same.
- A directed graph is acyclic if it does not contain any directed cycles

Indegree and Outdegree

\square Since the edges are directed

- We can't simply talk about Deg(v)
[Instead, we need to consider the arcs coming "in" and going "out"
- Thus, we define terms Indegree(v), and Outdegree(v)
[Each arc(u,v) contributes count 1 to the outdegree of u and the indegree of v

Calculate Indegree and Outdegree

- Outdegree is simple to compute
[Scan through list Adj[v] and count the arcs
\square Indegree calculation
[First, initialize indegree[v]=0 for each vertex v
[Scan through adj[v] list for each v
\square For each vertex w seen, indegree[w]++;
\square Running time: $\mathrm{O}(\mathrm{n}+\mathrm{m})$

Example

Indeg(2)?
Indeg(8)?
Outdeg(0)?
Num of Edges?
Total OutDeg?
Total Indeg?

Directed Graphs Usage

- Directed graphs are often used to represent orderdependent tasks
- That is we cannot start a task before another task finishes
- We can model this task dependent constraint using arcs
- An arc (i, j) means task j cannot start until task i is finished

Task j cannot start
until task i is finished

- Clearly, for the system not to hang, the graph must be acyclic

University Example

- CS departments course structure

Topological Sort

- Topological sort is an algorithm for a directed acyclic graph
- Linearly order the vertices so that the linear order respects the ordering relations implied by the arcs

For example:
$0,1,2,5,9$
0, 4, 5, 9
$0,6,3,7$?

It may not be unique as they are many 'equal' elements!

Topological Sort Algorithm

〕 Observations

[Starting point must have zero indegree

- If it doesn't exist, the graph would not be acyclic
[Algorithm

1. A vertex with zero indegree is a task that can start right away. So we can output it first in the linear order
2. If a vertex i is output, then its outgoing arcs (i, j) are no longer useful, since tasks j does not need to wait for i anymore- so remove all i's outgoing arcs
3. With vertex i removed, the new graph is still a directed acyclic graph. So, repeat step 1-2 until no vertex is left.

Topological Sort

Algorithm TSort(G)

Input: a directed acyclic graph G
Output: a topological ordering of vertices

1. initialize Q to be an empty queue;
2. for each vertex v
3.
4.
5. while Q is non-empty
6. do $v:=$ dequeue (Q);

Find all starting points
7.
8.

9. output v; \quad Reduce indegree (w) | for each arc (v, w) |
| :--- |
| \quad do $\operatorname{indegree}(w)=\operatorname{indegree}(w)-1 ;$ |
10.
11.

> | if indegree $(w)=0$ | $\begin{array}{l}\text { Place new start } \\ \text { then enqueue }(w) \\ \text { vertices on the }\end{array}$ |
| :---: | :---: |

The running time is $O(n+m)$.

Example

Indegree

0		6	1

$$
Q=\{0\}
$$

0	0
1	1
2	2
3	1
4	1
5	2
6	1
7	1
8	2
9	2

Indegree

Dequeue $0 \quad Q=\{ \}$
-> remove 0's arcs - adjust indegrees of neighbors

 \qquad

0	0
1	1
2	2
3	1
4	1
5	2
6	1
7	1
8	2
9	2

Decrement 0's neighbors

Indegree

0	0
1	0
2	2
3	1
4	0
5	2
6	0
7	1
8	2
9	2

Enqueue all new start points

Indegree

0	0	
1	0	
2	2	-1
3	1	-1
4	0	
5	2	
6	0	
7	1	
8	2	
9	2	

Adjust neighbors indegree

Indegree

Enqueue new start

Indegree

0	0	
1	0	
2	1	-1
3	0	
4	0	
5	2	
6	0	
7	1	
8	2	
9	2	

Adjust neighbors of 1

Indegree

Dequeue $1 \mathrm{Q}=\{4,3,2\}$
Enqueue 2

0	0
1	0
2	0
3	0
4	0
5	2
6	0
7	1
8	2
9	2

Enqueue new starting points

OUTPUT: 0614

Indegree

0	0
1	0
1	0
2	0
3	0
4	0
5	1
6	0
7	1
8	2
9	2

Dequeue 3 Q = \{ 2 \}
Adjust 3's neighbors
OUTPUT: 06143

Indegree

Dequeue $3 \mathrm{Q}=\{2$ \}
No new start points found

0	0
1	0
2	0
3	0
4	0
5	1
6	0
7	1
8	1
9	2

Indegree

Dequeue $2 \mathrm{Q}=\{$ \} Adjust 2's neighbors

Indegree

Dequeue $2 \mathrm{Q}=\{5,7\}$ Enqueue 5, 7

Indegree

0	0	
1	0	
2	0	
3	0	
4	0	
5	0	
6	0	
7	0	
8	1	
9	2	

Dequeue $5 \mathrm{Q}=\{7\}$
Adjust neighbors
OUTPUT: 0614325

Indegree

0	0
1	0
1	
2	0
3	0
4	0
5	0
6	0
7	0
8	1
9	1

Dequeue $5 \mathrm{Q}=\{7\}$ No new starts

OUTPUT: 0614325

Indegree

0	0	
1	0	
1	0	
2	0	
3	0	
4	0	
5	0	
6	0	
7	0	
8	1	
9	1	

Dequeue $7 \mathrm{Q}=\{$ \}
Adjust neighbors
OUTPUT: 06143257

Indegree

0	0	
1	0	
2	0	
3	0	
4	0	
5	0	
6	0	
7	0	
8	0	
9	1	

Dequeue $7 \mathrm{Q}=\{8\}$
Enqueue 8
OUTPUT: 06143257

Indegree

0	0	
	0	
1	0	
2	0	
3	0	
4	0	
5	0	
6	0	
7	0	
8	0	
9	1	

Dequeue 8 Q = \{ \}
Adjust indegrees of neighbors
Indegree

	$0 \rightarrow 6$	4
	$1 \rightarrow 2$	
	$2 \rightarrow 7$	5
	$3 \rightarrow 8$	
	$4 \rightarrow 5$	
(9)	$5 \rightarrow 9$	
	$6 \rightarrow 3$	2
	$7 \rightarrow 8$	
	$8-9$	
	9	

0	0
1	0
2	0
3	0
4	0
5	0
6	0
7	0
8	0
9	0

Dequeue $8 \mathrm{Q}=\{9\}$

Enqueue 9
Dequeue $9 \mathrm{Q}=\{$ \} STOP - no neighbors
OUTPUT: 0614325789

OUTPUT: 0614325789
Is output topologically correct?

Topological Sort: Complexity

- We never visited a vertex more than one time
- For each vertex, we had to examine all outgoing edges
- Σ outdegree (v) $=m$
\square This is summed over all vertices, not per vertex
- So, our running time is exactly
- O(n + m)

Summary:

Two representations:

] Some definitions: ...
[Two sizes: $\mathbf{n}=|\mathbf{V}|$ and $\mathrm{m}=\mid \mathrm{E}$,

- $\mathrm{m}=\mathrm{O}\left(\mathrm{n}^{\wedge}\right.$ 2)
[Adjacency List
[More compact than adjacency matrices if graph has few edges
- Requires a scan of adjacency list to check if an edge exists
- Requires a scan to obtain all edges!
- Adjacency Matrix
- Always require n^{2} space
\square This can waste a lot of space if the number of edges are sparse
- find if an edge exists in $\mathrm{O}(1)$
- Obtain all edges in O(n)
- O(n+m) for indegree for a DAG

(one), Two, (three) algorithms:

BFS (queue)
s is visited
enqueue(Q,s)
while not-empty(Q)
v <- dequeue(Q)
W = \{unvisited neighbors of $\mathbf{v}\}$ for each w in W
w is visited
enqueue(Q,w)

RDFS(v)

$$
\mathbf{v} \text { is visited }
$$

$\mathbf{W}=$ \{unvisited neighbors of \mathbf{v} \} for each w in W RDFS(w)

DFS (stack)
s is visited
push(S,s)
while not-empty(S)
v <- pop(S)

W = \{unvisited neighbors of $\mathbf{v}\}$ for each w in W
w is visited push(S,w)

Two applications

〕 For each non-visited vertex, run 'connected component' (either BFS or DFS)
] For a connected component, list all vertices, find a spanning tree (BFS tree or DFS tree)
['Shortest paths' and 'topological sort' (for DAG only) are close to BFS

