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Shortest Path Recording
 BFS we saw only tells us whether a path 

exists from source s, to other vertices v.
 It doesn’t tell us the path!
 We need to modify the algorithm to record the path

 How can we do that?
 Note: we do not know which vertices lie on this 

path until we reach v!
 Efficient solution:

Use an additional array pred[0..n-1]
Pred[w] = v  means that vertex w was visited from  v
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BFS + Path Finding

initialize 
all pred[v] to -1

Record where  
you came from
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Example
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Mark neighbors
as visited.

Record in Pred
that we came from 
2.

Dequeue 2.  
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Mark new visited
Neighbors.

Record in Pred
that we came 
from 8.

Dequeue 8.  
 -- Place all unvisited neighbors of 8 on the queue.
 -- Notice that 2 is not placed on the queue again, it has been visited!
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Mark new visited
Neighbors.

Record in Pred
that we came 
from 1.

Dequeue 1.  
 -- Place all unvisited neighbors of 1 on the queue.
 -- Only nodes 3 and 7 haven’t been visited yet.

Neighbors

8

2

-

1

2

-

-

1

2

8

Pred



 

Graph / Slide 9

 

2

4

3

5

1

7
6

9

8

0

Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)

T

T

T

T

T

F

F

T

T

T

Q = { 4, 0, 9, 3, 7 } → { 0, 9, 3, 7 } 
 
Dequeue 4.  
 -- 4 has no unvisited neighbors!
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Dequeue 0.  
 -- 0 has no unvisited neighbors!
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Dequeue 9.  
 -- 9 has no unvisited neighbors!

Neighbors

8

2

-

1

2

-

-

1

2

8

Pred



 

Graph / Slide 12

 

2

4

3

5

1

7
6

9

8

0

Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)

T

T

T

T

T

T

F

T

T

T
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Dequeue 3.  
 -- place neighbor 5 on the queue.

Neighbors

Mark new visited
Vertex 5.

Record in Pred
that we came 
from 3.
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Dequeue 7.  
 -- place neighbor 6 on the queue.

Neighbors

Mark new visited
Vertex 6.

Record in Pred
that we came 
from 7.
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Dequeue 5.  
 -- no unvisited neighbors of 5.
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Dequeue 6.  
 -- no unvisited neighbors of 6.
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BFS Finished
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STOP!!!   Q is empty!!!

Pred now can be traced backward
to report the path!
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Path Reporting
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Try some examples, report path from s to v:
Path(0) ->
Path(6) ->
Path(1) ->

The path returned is the shortest from s to v 
(minimum number of edges).

Recursive algorithm
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BFS Tree

 The paths found by BFS is often drawn as a rooted 
tree (called BFS tree), with the starting vertex as the 
root of the tree. BFS tree for vertex s=2.

Question: What would a “level” order traversal tell you?
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Record the Shortest Distance

d(v) = ;

d(w)=d(v)+1;

d(s) = 0;
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Application of BFS

  One application concerns how to find   

     connected components in a graph

  If a graph has more than one connected 
components, BFS builds a BFS-forest 
(not just BFS-tree)!
 Each tree in the forest is a connected 

component.
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