Breadth First Search (BFS) Part 2

Lecture 23

Shortest Path Recording

[BFS we saw only tells us whether a path exists from source s , to other vertices v .
[It doesn't tell us the path!
\square We need to modify the algorithm to record the path
[How can we do that?
[Note: we do not know which vertices lie on this path until we reach v!
〕 Efficient solution:
\square Use an additional array pred[0..n-1]
\square Pred $[w]=v$ means that vertex w was visited from v

BFS + Path Finding

Algorithm BFS(s)

1. for each vertex v
2. do $\operatorname{flag}(v):=$ false;
3. $\quad \operatorname{pred}[v]:=-1$;
4. $\quad Q=$ empty queue;
5. flag $[s]:=$ true;
6. enqueue (Q, s);
7. while Q is not empty
8. do $v:=$ dequeue (Q);
9.
10.
11.
12.
13.

for each w adjacent to v do if $\operatorname{flag}[w]=$ false then $\operatorname{flag}[w]:=$ true; $\operatorname{pred}[w]:=v ;$
enqueue (Q, w)
initialize all pred[v] to -1

Record where you came from

Example

Visited Table
Adjacency List (T/F)

0	F
1	F
2	F
3	F
4	F
5	F
6	F
7	F
8	F
9	F

Initialize visited
table (all False)

$$
\mathbf{Q}=\{\quad\}
$$

Initialize \mathbf{Q} to be empty

Adjacency List

Visited Table (T/F)

0	F
1	F
2	T
3	F
4	F
5	F
6	F
7	F
8	F
9	F

Flag that 2 has been visited.
$\mathbf{Q}=\{2\}$

Place source 2 on the queue.

Visited Table (T/F)

0	T
1	T
2	T
3	F
4	T
5	F
6	F
7	F
8	T
9	T

8
$\mathbf{2}$
-
-
2
-
-
-
2
8
Pred

Mark new visited Neighbors.

Record in Pred that we came from 8.

Dequeue 8.
-- Place all unvisited neighbors of 8 on the queue.
-- Notice that 2 is not placed on the queue again, it has been visited!

$$
\mathbf{Q}=\{1,4,0,9\} \rightarrow\{4,0,9,3,7\}
$$

Dequeue 1.

-- Place all unvisited neighbors of 1 on the queue.
-- Only nodes 3 and 7 haven't been visited yet.

BFS Finished

Adjacency List

Visited Table (T/F)

0	T
1	T
2	T
3	T
4	T
5	T
6	T
7	T
8	T
9	T

8
2
-
1
2
3
7
1
2
8

Pred now can be traced backward to report the path!

Path Reporting

nodes visited from

0	8
1	2
2	-
3	1
4	2
5	3
6	7
7	1
8	2
9	8

Recursive algorithm

Algorithm Path (w)

1. if $\operatorname{pred}[w] \neq-1$
2. then
3.

Path(pred[w]);
4. output w

Try some examples, report path from s to v: Path(0) ->
Path(6) ->
Path(1) ->
The path returned is the shortest from s to v (minimum number of edges).

BFS Tree

- The paths found by BFS is often drawn as a rooted tree (called BFS tree), with the starting vertex as the root of the tree.

Question: What would a "level" order traversal tell you?

Record the Shortest Distance

$$
\begin{aligned}
& \text { Algorithm BFS(s) } \\
& \text { 1. for each vertex } v \\
& \text { 2. do } \operatorname{flag}(v):=\text { false; } \\
& \text { 3. } \quad \operatorname{pred}[v]:=-1 ; \mathrm{d}(\mathrm{v})=\infty \text {; } \\
& \text { 4. } \quad Q=\text { empty queue; } \\
& \text { 5. } \operatorname{flag}[s]:=\text { true; } \mathrm{d}(\mathrm{~s})=0 \text {; } \\
& \text { 6. enqueue }(Q, s) \text {; } \\
& \text { 7. while } Q \text { is not empty } \\
& \text { 8. do } v:=\text { dequeue }(Q) \text {; } \\
& 9 . \\
& 10 . \\
& \text { for each } w \text { adjacent to } v \\
& \text { do if } \operatorname{flag}[w]=\text { false } \\
& \text { 11. then } \operatorname{flag}[w]:=\text { true; } \\
& 12 . \\
& \mathrm{d}(\mathrm{w})=\mathrm{d}(\mathrm{v})+1 ; \operatorname{pred}[w]:=v \text {; } \\
& 13 . \\
& \text { enqueue }(Q, w)
\end{aligned}
$$

Application of BFS

] One application concerns how to find connected components in a graph
[If a graph has more than one connected components, BFS builds a BFS-forest (not just BFS-tree)!

- Each tree in the forest is a connected component.

