

Breadth First Search (BFS)
Part 2

Lecture 23

COMP171

Fall 2006

Graph / Slide 2

Shortest Path Recording
 BFS we saw only tells us whether a path

exists from source s, to other vertices v.
 It doesn’t tell us the path!
 We need to modify the algorithm to record the path

 How can we do that?
 Note: we do not know which vertices lie on this

path until we reach v!
 Efficient solution:

Use an additional array pred[0..n-1]
Pred[w] = v means that vertex w was visited from v

Graph / Slide 3

BFS + Path Finding

initialize
all pred[v] to -1

Record where
you came from

Graph / Slide 4

Example

2

4

3

5

1

7
6

9

8

0

Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table
(T/F)

F

F

F

F

F

F

F

F

F

F

Q = { }

Initialize visited
table (all False)

Initialize Pred to -1

Initialize Q to be empty

-

-

-

-

-

-

-

-

-

-

Pred

Graph / Slide 5

2

4

3

5

1

7
6

9

8

0

Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)

F

F

T

F

F

F

F

F

F

F

Q = { 2 }

Flag that 2 has
been visited.

Place source 2 on the queue.

-

-

-

-

-

-

-

-

-

-

Pred

Graph / Slide 6

2

4

3

5

1

7
6

9

8

0

Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)

F

T

T

F

T

F

F

F

T

F

Q = {2} → { 8, 1, 4 }

Mark neighbors
as visited.

Record in Pred
that we came from
2.

Dequeue 2.
Place all unvisited neighbors of 2 on the queue

Neighbors

-

2

-

-

2

-

-

-

2

-

Pred

Graph / Slide 7

2

4

3

5

1

7
6

9

8

0

Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)

T

T

T

F

T

F

F

F

T

T

Q = { 8, 1, 4 } → { 1, 4, 0, 9 }
Mark new visited
Neighbors.

Record in Pred
that we came
from 8.

Dequeue 8.
 -- Place all unvisited neighbors of 8 on the queue.
 -- Notice that 2 is not placed on the queue again, it has been visited!

Neighbors

8

2

-

-

2

-

-

-

2

8

Pred

Graph / Slide 8

2

4

3

5

1

7
6

9

8

0

Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)

T

T

T

T

T

F

F

T

T

T

Q = { 1, 4, 0, 9 } → { 4, 0, 9, 3, 7 }

Mark new visited
Neighbors.

Record in Pred
that we came
from 1.

Dequeue 1.
 -- Place all unvisited neighbors of 1 on the queue.
 -- Only nodes 3 and 7 haven’t been visited yet.

Neighbors

8

2

-

1

2

-

-

1

2

8

Pred

Graph / Slide 9

2

4

3

5

1

7
6

9

8

0

Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)

T

T

T

T

T

F

F

T

T

T

Q = { 4, 0, 9, 3, 7 } → { 0, 9, 3, 7 }

Dequeue 4.
 -- 4 has no unvisited neighbors!

Neighbors

8

2

-

1

2

-

-

1

2

8

Pred

Graph / Slide 10

2

4

3

5

1

7
6

9

8

0

Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)

T

T

T

T

T

F

F

T

T

T

Q = { 0, 9, 3, 7 } → { 9, 3, 7 }

Dequeue 0.
 -- 0 has no unvisited neighbors!

Neighbors
8

2

-

1

2

-

-

1

2

8

Pred

Graph / Slide 11

2

4

3

5

1

7
6

9

8

0

Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)

T

T

T

T

T

F

F

T

T

T

Q = { 9, 3, 7 } → { 3, 7 }

Dequeue 9.
 -- 9 has no unvisited neighbors!

Neighbors

8

2

-

1

2

-

-

1

2

8

Pred

Graph / Slide 12

2

4

3

5

1

7
6

9

8

0

Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)

T

T

T

T

T

T

F

T

T

T

Q = { 3, 7 } → { 7, 5 }

Dequeue 3.
 -- place neighbor 5 on the queue.

Neighbors

Mark new visited
Vertex 5.

Record in Pred
that we came
from 3.

8

2

-

1

2

3

-

1

2

8

Pred

Graph / Slide 13

2

4

3

5

1

7
6

9

8

0

Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)

T

T

T

T

T

T

T

T

T

T

Q = { 7, 5 } → { 5, 6 }

Dequeue 7.
 -- place neighbor 6 on the queue.

Neighbors

Mark new visited
Vertex 6.

Record in Pred
that we came
from 7.

8

2

-

1

2

3

7

1

2

8

Pred

Graph / Slide 14

2

4

3

5

1

7
6

9

8

0

Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)

T

T

T

T

T

T

T

T

T

T

Q = { 5, 6} → { 6 }

Dequeue 5.
 -- no unvisited neighbors of 5.

Neighbors

8

2

-

1

2

3

7

1

2

8

Pred

Graph / Slide 15

2

4

3

5

1

7
6

9

8

0

Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)

T

T

T

T

T

T

T

T

T

T

Q = { 6 } → { }

Dequeue 6.
 -- no unvisited neighbors of 6.

Neighbors

8

2

-

1

2

3

7

1

2

8

Pred

Graph / Slide 16

BFS Finished

2

4

3

5

1

7
6

9

8

0

Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)

T

T

T

T

T

T

T

T

T

T

Q = { }

STOP!!! Q is empty!!!

Pred now can be traced backward
to report the path!

8

2

-

1

2

3

7

1

2

8

Pred

Graph / Slide 17

Path Reporting

8

2

-

1

2

3

7

1

2

8

0

1

2

3

4

5

6

7

8

9

nodes visited from

Try some examples, report path from s to v:
Path(0) ->
Path(6) ->
Path(1) ->

The path returned is the shortest from s to v
(minimum number of edges).

Recursive algorithm

Graph / Slide 18

BFS Tree

 The paths found by BFS is often drawn as a rooted
tree (called BFS tree), with the starting vertex as the
root of the tree. BFS tree for vertex s=2.

Question: What would a “level” order traversal tell you?

Graph / Slide 19

Record the Shortest Distance

d(v) = ;

d(w)=d(v)+1;

d(s) = 0;

Graph / Slide 20

Application of BFS

 One application concerns how to find

 connected components in a graph

 If a graph has more than one connected
components, BFS builds a BFS-forest
(not just BFS-tree)!
 Each tree in the forest is a connected

component.

	Breadth First Search (BFS) Part 2
	Shortest Path Recording
	BFS + Path Finding
	Example
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	BFS Finished
	Path Reporting
	BFS Tree
	Record the Shortest Distance
	Application of BFS

