COMP171
Fall 2006

Breadth First Search (BFS)
Part 2

Lecture 23

Graph / Slide 2

Shortest Path Recording

0 BFS we saw only tells us whether a path
exists from source s, to other vertices v.
0 It doesn't tell us the path!
0 We need to modify the algorithm to record the path

0 How can we do that?

0 Note: we do not know which vertices lie on this
path until we reach v!
[0 Efficient solution:

~Use an additional array pred[0..n-1]
/= Pred[w] = v means that vertex w was visited from v

Graph / Slide 3

BFS + Path Finding

Algorithm BFS(s)
for each vertex v
do flag(v) := false;
pred[v] := —1;
@ = empty queue;
flag[s] := true;
enqueue(Q, s);
while @ is not empty
do v := dequeue(Q);
for each w adjacent to v
do if flag[w] = false
then flag[w] := true;
pred[w] = v; Record where
enqueue(Q,w) you came from

Initialize
all pred|v] to -1

1.
2.
3.
4.
5.
0.
7.
8.
0.

e
N = O

|—L
W

Graph / Slide 4

Example Visited Table

Adjacency List (T/F)

o|F

1|F

2 |F

3|F

source 41 F
5| F

6|F

7|F

8 |F

9| F

Initialize visited

table (all False)

Q= ! Initialize Pred to -1

Initialize Q to be empty

Graph / Slide 5

Adjacency List Visited Table (T/F)

source

2
=)

. -) .
\ N N I
(=2}

(3]
M| M| M| M| M| M| M| <4 M| M
1

Pred

Flag that 2 has
been visited.

Q=1{2 }

Place source 2 on the queue.

Graph / Slide 6

Adjacency List Visited Table (T/F)

2
=)

. -) .
\ N N I
(=2}

2

Pred

S
M| < M| M MM < M| < < | ™M
N

Mark neighbors
as visited.

Q={2}—> {8,1,4}

Record in Pred

Dequeue 2. that we came from
Place all unvisited neighbors of 2 on the queue o

Graph / Slide 7

Adjacency List Visited Table (T/F)

o|T 8
1T 2
2| T
3|F
41T 2
5| F
6|F
7|F
8| T 2
91 T 8
Pred
Mark new visited
Q={ 811’4}_){114’()’9} NeighborS.
Record in Pred
Dequeue 8. that we came
-- Place all unvisited neighbors of 8 on the queue. from 8.

-- Notice that 2 is not placed on the queue again, it has been visited!

Graph / Slide 8

Adjacency List Visited Table (T/F)

8
2

1
2
8

Pred
Mark new visited

Neighbors.

H
A=Al ||| A |44 4|
N

Qq={140,9}-{4093,7}

Record in Pred
that we came

Dequeue 1. P———

-- Place all unvisited neighbors of 1 on the queue.
-- Only nodes 3 and 7 haven'’t been visited yet.

Graph / Slide 9

Adjacency List Visited Table (T/F)

o|T 8

11T 2

2| T -

ST 1

4| T p

5|F -

6|F -

T 1

8| T 2

O T 8
Pred

Q=1{4093,7}—-{0,93,7}

Dequeue 4.
-- 4 has no unvisited neighbors!

Graph / Slide 10

Adjacency List Visited Table (T/F)

Neighbors o 8

11T 2

2T .

3T 1

41T 2

source 5| F)
6| F .

T 1

81 T 2

G 91T 8

G :- - Pred

Q=1{0,937}-{9,3,7}

Dequeue 0.
-- 0 has no unvisited neighbors!

Graph / Slide 11

Adjacency List Visited Table (T/F)

o|T 8

1T 2

2| T -

ST 1

4| T p

5|F -

6| F -

T 1

8| T 2

O T 8
Pred

Q={9,3,7}—>{3,7}

Dequeue 9.
-- 9 has no unvisited neighbors!

Graph / Slide 12

Adjacency List Visited Table (T/F)

0T 8
17T 2
2| T]
3| T 1
4 | T 2
5| T 3
6| F _
7| T 1
8 | T 2
9 T 8
N Pred
Mark new visited
Vertex 5.

Q= {3,7}—>{7,5}
Record in Pred
Dequeue 3. that we came
-- place neighbor 5 on the queue. from 3.

Graph / Slide 13

Adjacency List Visited Table (T/F)

(3]
A=A A | A | A A || A=
N WO

Pred

Mark new visited
Vertex 6.

Q={7.5}—{5,6}

Record in Pred
Dequeue 7. that we came

-- place neighbor 6 on the queue. from 7.

Graph / Slide 14

Adjacency List Visited Table (T/F)

source

(3]
A=A A | A | A A || A=
N | W DN

Pred

Q={56}—{6}

Dequeue 5.
-- no unvisited neighbors of 5.

Graph / Slide 15

Adjacency List Visited Table (T/F)

source

(3]
A=A A | A | A A || A=
N | W DN

Pred

Q={6}—1{}

Dequeue 6.
-- no unvisited neighbors of 6.

Graph / Slide 16

BFS Finished

Adjacency List Visited Table (T/F)

o|T 8
1T 2
2| 7T
3| T 1
4 | T 2

source 57T 3
6 | T 7
7T 1
8| T 2
9T 8

Pred

Pred now can be traced backward
Q=1! STOP!!! Qisempty!!! toreportthe path!

Graph / Slide 17

Path Reporting

nodes visited from

0|8
12
2
301
42
53
6|7
701
8 |2
9|8
Recursive algorithm
Algorithm Path(w) Try some examples, report path from s to v:
1. if predw] # -1 Path(0) ->
5 then Path(6) ->
3 Path(pred[w]): Faln(il) =
4. output w The path returned is the shortest from s to v

(minimum number of edges).

Graph / Slide 18

BEFS Tree

0 The paths found by BFS is often drawn as a rooted
tree (called BFS tree), with the starting vertex as the
root of the tree.

Question: What would a “level” order traversal tell you?

Graph / Slide 19

Record the Shortest Distance

Algorithm BFS(s)
for each vertex v
do flag(v) := false;
pred[v] := —1; d(v) = o;
Q@ = empty queue;
flag[s] := true; d(s)=0;
enqueue(Q, s);
while @ is not empty
do v := dequeue(Q);
for each w adjacent to v
do if flaglw] = false
then flag[w] := true;
d(w)=d(v)+1; pred[w] 1= v;
enqueue(Q,w)

1.
2.
3.
4.
5.
6.
7.
8.
9

e
W= oO-

\)

Y/a\N

Graph / Slide 20

Application of BFS

0 One application concerns how to find
connected components in a graph

0 If a graph has more than one connected
components, BFS builds a BFS-forest
(not just BFS-tree)!

[0 Each tree in the forest is a connected
component.

	Breadth First Search (BFS) Part 2
	Shortest Path Recording
	BFS + Path Finding
	Example
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	BFS Finished
	Path Reporting
	BFS Tree
	Record the Shortest Distance
	Application of BFS

