

Breadth First Search (BFS)
Part 2

Lecture 23

COMP171

Fall 2006

Graph / Slide 2

Shortest Path Recording
 BFS we saw only tells us whether a path

exists from source s, to other vertices v.
 It doesn’t tell us the path!
 We need to modify the algorithm to record the path

 How can we do that?
 Note: we do not know which vertices lie on this

path until we reach v!
 Efficient solution:

Use an additional array pred[0..n-1]
Pred[w] = v means that vertex w was visited from v

Graph / Slide 3

BFS + Path Finding

initialize
all pred[v] to -1

Record where
you came from

Graph / Slide 4

Example

2

4

3

5

1

7
6

9

8

0

Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table
(T/F)

F

F

F

F

F

F

F

F

F

F

Q = { }

Initialize visited
table (all False)

Initialize Pred to -1

Initialize Q to be empty

-

-

-

-

-

-

-

-

-

-

Pred

Graph / Slide 5

2

4

3

5

1

7
6

9

8

0

Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)

F

F

T

F

F

F

F

F

F

F

Q = { 2 }

Flag that 2 has
been visited.

Place source 2 on the queue.

-

-

-

-

-

-

-

-

-

-

Pred

Graph / Slide 6

2

4

3

5

1

7
6

9

8

0

Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)

F

T

T

F

T

F

F

F

T

F

Q = {2} → { 8, 1, 4 }

Mark neighbors
as visited.

Record in Pred
that we came from
2.

Dequeue 2.
Place all unvisited neighbors of 2 on the queue

Neighbors

-

2

-

-

2

-

-

-

2

-

Pred

Graph / Slide 7

2

4

3

5

1

7
6

9

8

0

Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)

T

T

T

F

T

F

F

F

T

T

Q = { 8, 1, 4 } → { 1, 4, 0, 9 }
Mark new visited
Neighbors.

Record in Pred
that we came
from 8.

Dequeue 8.
 -- Place all unvisited neighbors of 8 on the queue.
 -- Notice that 2 is not placed on the queue again, it has been visited!

Neighbors

8

2

-

-

2

-

-

-

2

8

Pred

Graph / Slide 8

2

4

3

5

1

7
6

9

8

0

Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)

T

T

T

T

T

F

F

T

T

T

Q = { 1, 4, 0, 9 } → { 4, 0, 9, 3, 7 }

Mark new visited
Neighbors.

Record in Pred
that we came
from 1.

Dequeue 1.
 -- Place all unvisited neighbors of 1 on the queue.
 -- Only nodes 3 and 7 haven’t been visited yet.

Neighbors

8

2

-

1

2

-

-

1

2

8

Pred

Graph / Slide 9

2

4

3

5

1

7
6

9

8

0

Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)

T

T

T

T

T

F

F

T

T

T

Q = { 4, 0, 9, 3, 7 } → { 0, 9, 3, 7 }

Dequeue 4.
 -- 4 has no unvisited neighbors!

Neighbors

8

2

-

1

2

-

-

1

2

8

Pred

Graph / Slide 10

2

4

3

5

1

7
6

9

8

0

Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)

T

T

T

T

T

F

F

T

T

T

Q = { 0, 9, 3, 7 } → { 9, 3, 7 }

Dequeue 0.
 -- 0 has no unvisited neighbors!

Neighbors
8

2

-

1

2

-

-

1

2

8

Pred

Graph / Slide 11

2

4

3

5

1

7
6

9

8

0

Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)

T

T

T

T

T

F

F

T

T

T

Q = { 9, 3, 7 } → { 3, 7 }

Dequeue 9.
 -- 9 has no unvisited neighbors!

Neighbors

8

2

-

1

2

-

-

1

2

8

Pred

Graph / Slide 12

2

4

3

5

1

7
6

9

8

0

Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)

T

T

T

T

T

T

F

T

T

T

Q = { 3, 7 } → { 7, 5 }

Dequeue 3.
 -- place neighbor 5 on the queue.

Neighbors

Mark new visited
Vertex 5.

Record in Pred
that we came
from 3.

8

2

-

1

2

3

-

1

2

8

Pred

Graph / Slide 13

2

4

3

5

1

7
6

9

8

0

Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)

T

T

T

T

T

T

T

T

T

T

Q = { 7, 5 } → { 5, 6 }

Dequeue 7.
 -- place neighbor 6 on the queue.

Neighbors

Mark new visited
Vertex 6.

Record in Pred
that we came
from 7.

8

2

-

1

2

3

7

1

2

8

Pred

Graph / Slide 14

2

4

3

5

1

7
6

9

8

0

Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)

T

T

T

T

T

T

T

T

T

T

Q = { 5, 6} → { 6 }

Dequeue 5.
 -- no unvisited neighbors of 5.

Neighbors

8

2

-

1

2

3

7

1

2

8

Pred

Graph / Slide 15

2

4

3

5

1

7
6

9

8

0

Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)

T

T

T

T

T

T

T

T

T

T

Q = { 6 } → { }

Dequeue 6.
 -- no unvisited neighbors of 6.

Neighbors

8

2

-

1

2

3

7

1

2

8

Pred

Graph / Slide 16

BFS Finished

2

4

3

5

1

7
6

9

8

0

Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)

T

T

T

T

T

T

T

T

T

T

Q = { }

STOP!!! Q is empty!!!

Pred now can be traced backward
to report the path!

8

2

-

1

2

3

7

1

2

8

Pred

Graph / Slide 17

Path Reporting

8

2

-

1

2

3

7

1

2

8

0

1

2

3

4

5

6

7

8

9

nodes visited from

Try some examples, report path from s to v:
Path(0) ->
Path(6) ->
Path(1) ->

The path returned is the shortest from s to v
(minimum number of edges).

Recursive algorithm

Graph / Slide 18

BFS Tree

 The paths found by BFS is often drawn as a rooted
tree (called BFS tree), with the starting vertex as the
root of the tree. BFS tree for vertex s=2.

Question: What would a “level” order traversal tell you?

Graph / Slide 19

Record the Shortest Distance

d(v) = ;

d(w)=d(v)+1;

d(s) = 0;

Graph / Slide 20

Application of BFS

 One application concerns how to find

 connected components in a graph

 If a graph has more than one connected
components, BFS builds a BFS-forest
(not just BFS-tree)!
 Each tree in the forest is a connected

component.

	Breadth First Search (BFS) Part 2
	Shortest Path Recording
	BFS + Path Finding
	Example
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	BFS Finished
	Path Reporting
	BFS Tree
	Record the Shortest Distance
	Application of BFS

