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Shortest Path Recording
 BFS we saw only tells us whether a path 

exists from source s, to other vertices v.
 It doesn’t tell us the path!
 We need to modify the algorithm to record the path

 How can we do that?
 Note: we do not know which vertices lie on this 

path until we reach v!
 Efficient solution:

Use an additional array pred[0..n-1]
Pred[w] = v  means that vertex w was visited from  v
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BFS + Path Finding

initialize 
all pred[v] to -1

Record where  
you came from
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Example

2

4

3

5

1

7
6

9

8

0

Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table 
(T/F)

F

F

F

F

F

F

F

F

F

F

Q = {    }

Initialize visited
table (all False)

Initialize Pred to -1

Initialize Q to be empty

-

-

-

-

-

-

-

-

-

-

Pred



 

Graph / Slide 5

 

2

4

3

5

1

7
6

9

8

0

Adjacency List

source

0

1

2

3

4

5

6

7

8

9

Visited Table (T/F)

F

F

T

F

F

F

F

F

F

F

Q = {  2   }

Flag that 2 has 
been visited.
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Mark neighbors
as visited.

Record in Pred
that we came from 
2.

Dequeue 2.  
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Mark new visited
Neighbors.

Record in Pred
that we came 
from 8.

Dequeue 8.  
 -- Place all unvisited neighbors of 8 on the queue.
 -- Notice that 2 is not placed on the queue again, it has been visited!
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Mark new visited
Neighbors.

Record in Pred
that we came 
from 1.

Dequeue 1.  
 -- Place all unvisited neighbors of 1 on the queue.
 -- Only nodes 3 and 7 haven’t been visited yet.
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Dequeue 4.  
 -- 4 has no unvisited neighbors!
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Dequeue 0.  
 -- 0 has no unvisited neighbors!
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Dequeue 9.  
 -- 9 has no unvisited neighbors!
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Dequeue 3.  
 -- place neighbor 5 on the queue.

Neighbors

Mark new visited
Vertex 5.

Record in Pred
that we came 
from 3.
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Dequeue 7.  
 -- place neighbor 6 on the queue.

Neighbors

Mark new visited
Vertex 6.

Record in Pred
that we came 
from 7.
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Dequeue 5.  
 -- no unvisited neighbors of 5.
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Dequeue 6.  
 -- no unvisited neighbors of 6.
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BFS Finished
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STOP!!!   Q is empty!!!

Pred now can be traced backward
to report the path!
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Path Reporting
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Try some examples, report path from s to v:
Path(0) ->
Path(6) ->
Path(1) ->

The path returned is the shortest from s to v 
(minimum number of edges).

Recursive algorithm
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BFS Tree

 The paths found by BFS is often drawn as a rooted 
tree (called BFS tree), with the starting vertex as the 
root of the tree. BFS tree for vertex s=2.

Question: What would a “level” order traversal tell you?
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Record the Shortest Distance

d(v) = ;

d(w)=d(v)+1;

d(s) = 0;
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Application of BFS

  One application concerns how to find   

     connected components in a graph

  If a graph has more than one connected 
components, BFS builds a BFS-forest 
(not just BFS-tree)!
 Each tree in the forest is a connected 

component.
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