
Searching Elements in an Array:

Linear and Binary Search

Spring Semester 2011 Programming and Data Structure 1

Searching

• Check if a given element (called key) occurs
in the array.

– Example: array of student records; rollno can be
the key.

• Two methods to be discussed:

Spring Semester 2011 Programming and Data Structure 2

• Two methods to be discussed:

– If the array elements are unsorted.

• Linear search

– If the array elements are sorted.

• Binary search

Linear Search

Spring Semester 2011 Programming and Data Structure 3

Basic Concept

• Basic idea:

– Start at the beginning of the array.

– Inspect elements one by one to see if it matches the key.

• Time complexity:

– A measure of how long an algorithm takes to run.

Spring Semester 2011 Programming and Data Structure 4

– If there are n elements in the array:

• Best case:

match found in first element (1 search operation)

• Worst case:

no match found, or match found in the last element
(n search operations)

• Average case:

(n + 1) / 2 search operations

#include <stdio.h>

int linear_search (int a[], int size, int key)

{

for (int i=0; i<size; i++)

if (a[i] == key) return i;

return -1;return -1;

}

int main()

{

int x[]={12,-3,78,67,6,50,19,10}, val;

printf (”\nEnter number to search: ”);

scanf (”%d”, &val);

printf (”\nValue returned: %d \n”, linear_search (x,8,val);

}
Spring Semester 2011 Programming and Data Structure 5

• What does the function linear_search do?

– It searches the array for the number to be
searched element by element.

– If a match is found, it returns the array index.

– If not found, it returns -1.– If not found, it returns -1.

Spring Semester 2011 Programming and Data Structure 6

Contd.

int x[]= {12, -3, 78, 67, 6, 50, 19, 10};

• Trace the following calls :

search (x, 8, 6) ; Returns 4

Spring Semester 2011 Programming and Data Structure 7

search (x, 8, 5) ;

Returns -1

Binary Search

Spring Semester 2011 Programming and Data Structure 8

Basic Concept

• Binary search works if the array is sorted.

– Look for the target in the middle.

– If you don’t find it, you can ignore half of the
array, and repeat the process with the other
half.

Spring Semester 2011 Programming and Data Structure 9

half.

• In every step, we reduce the number of
elements to search in by half.

The Basic Strategy

• What we want?

– Find split between values larger and smaller than key:

0

<=key >keyx:

n-1

L R

Spring Semester 2011 Programming and Data Structure 10

– Situation while searching:

• Initially L and R contains the indices of first and last elements.

– Look at the element at index [(L+R)/2].

• Move L or R to the middle depending on the outcome of test.

L R

Iterative Version

#include <stdio.h>

int bin_search (int a[], int size, int key)

{

int L, R, mid;

L = 0; R = size – 1;

while (L <= R) {while (L <= R) {

mid = (L + R) / 2;

if (a[mid] < key) L = mid + 1;

else if (a[mid] > key) R = mid -1;

else return mid; /* FOUND AT INDEX mid */

}

return -1; /* NOT FOUND */

}

Spring Semester 2011 Programming and Data Structure 11

int main()

{

int x[]={10,20,30,40,50,60,70,80}, val;

printf (”\nEnter number to search: ”);

scanf (”%d”, &val);

printf (”\nValue returned: %d \n”, bin_search (x,8,val);

}

Spring Semester 2011 Programming and Data Structure 12

Recursive Version

#include <stdio.h>

int bin_search (int a[], int L, int R, int key)

{

int mid;

if (R < L) return -1; /* NOT FOUND */

mid = (L + R) / 2;mid = (L + R) / 2;

if (a[mid] < key) return (bin_search(a,mid+1,R,key));

else if (a[mid] > key) return (bin_search(a,L,mid-1,key));

else return mid; /* FOUND AT INDEX mid */

}

Spring Semester 2011 Programming and Data Structure 13

int main()

{

int x[]={10,20,30,40,50,60,70,80}, val;

printf (”\nEnter number to search: ”);

scanf (”%d”, &val);

printf (”\nValue returned: %d \n”, bin_search (x,0,7,val);

}

Spring Semester 2011 Programming and Data Structure 14

Is it worth the trouble ?

• Suppose that the array x has 1000 elements.

• Ordinary search

– If key is a member of x, it would require 500 comparisons
on the average.

• Binary search

Spring Semester 2011 Programming and Data Structure 15

• Binary search

– after 1st compare, left with 500 elements.

– after 2nd compare, left with 250 elements.

– After at most 10 steps, you are done.

Time Complexity

• If there are n elements in the array.

– Number of searches required: log2n

• For n = 64 (say).
– Initially, list size = 64.

2k= n, where k is the

number of steps.

Spring Semester 2011 Programming and Data Structure 16

– After first compare, list size = 32.

– After second compare, list size = 16.

– After third compare, list size = 8.

– …….

– After sixth compare, list size = 1.

log264 = 6

log21024 = 10

number of steps.

