
Math ReviewMath Review

1Cpt S 223. School of EECS, WSU

Why do we need math in a
data structures course?

 To Analyze data structures and
algorithmsalgorithms
 Deriving formulae for time and memory

requirementsq
 Will the solution scale?
 Quantify the results Quantify the results

 Proving algorithm correctness

2Cpt S 223. School of EECS, WSU

Examples – how much “time” does
Definition: Let T(n) denote the time take by an algorithm on an input of size n.

Examples how much time does
each of these algorithms take?

// A A i i t f i
Algorithm1 (A,n)

max = infinity

Algorithm2 (A, start, end)
if (n<2) return
mid = floor(n/2)

// Assume A is an integer array of size n

T(n) n T(n)

max = -infinity
for (i=1 to n) {

if(A[i]>max) max=A[i];
}

mid = floor(n/2)
if (condition#1)

Algorithm2 (A,1,mid)
else

T(n/2)

Output max;

 () 2 (/2)

Algorithm2 (A,mid+1,n)

Algorithm3 (A,n)
if (n<2) return

 T(n) T(n/2) + const.

T(n/2)

T(n)
 T(n) = 2 T(n/2) + const.

These are not a closed form yet.
If l th ill t

if (n<2) return
x = floor(n/2)
Algorithm3 (A,1,x)
Algorithm3 (A,x+1,n)

T(n/2)
T(n/2)

3
Cpt S 223. School of EECS, WSU

If you solve the recurrences, you will get,
O(lg n) for Algorithm2, and
O(n) for Algorithm3

Example

 Consider Algorithm1 that divides the input
array in half and calls Algorithm1 recursively
on each half

Algorithm1 (A,n) T(n)g ()
// A is an integer array of size n
if (n<2) return
x = floor(n/2)
Algorithm1 (A 1 x)

()

T(n/2)

Constant time

 What is the running time of Algorithm1?

Algorithm1 (A,1,x)
Algorithm1 (A,x+1,n) T(n/2)

g g

4Cpt S 223. School of EECS, WSU
T(n) = T(n/2) + T(n/2) + const.

This is not a closed form yet.

Floors and Ceilings

 floor(x), denoted , is the greatest
integer ≤ x

 x
integer ≤ x

 ceiling(x), denoted , is the smallest
integer ≥ x

 x
integer ≥ x

 Normally used to divide input into
integral parts NN integral parts NNN

22

5Cpt S 223. School of EECS, WSU

Exponents

 BABA XXX

 BA
B

A

X
X
X

)(ABBA XX
X

1

2

222
2

NNN

NNNN XXXX

6

222
Cpt S 223. School of EECS, WSU

Logarithms

1,0,,;loglog

X" base B of logarithm" log

ACBABB

BXAB

C
A

A
X

Our convention for the course:

0,;logloglog

,,,;
log

g

A

BABAAB
AC

A Our convention for the course:
lg n == log2 n
log n == log10 n
ln n == loge n

loglog

logloglog

ABA

BA
B
A

B PS: In Weiss book,
log n log n

logarithm"natural"...7182.2;logln
loglg

0 allfor log

2

eAA
AA

XXX log n log2n

7

logarithmnatural ...7182.2;logln eAA e

Cpt S 223. School of EECS, WSU

 What is the meaning of the log
function?function?

For example lg 1024 For example, lg 1024

8Cpt S 223. School of EECS, WSU

Example

 How many times to halve an array of
length n until its length is 1?length n until its length is 1?

KeepHalving (n)
i = 0
while n ≠ 1

i = i + 1
n = floor(n/2)

return i

What will be the value of i?

return i

9Cpt S 223. School of EECS, WSU

Factorials

0 if)!1(
0 if 1

!
nnn

n
n

ionapproximatsStirling'))/1(1()/(n2n!

!

nen

nn
n

n

ppg))(()(

n! == how many ways to order a set of n elements?

10Cpt S 223. School of EECS, WSU

Modular Arithmetic

)(mod)mod()mod(

/mod

NBANBNA

NANANA

)10(mod16181 E.g.,
N" modulo B tocongruent isA "

)()()(

)(mod If

)(g

 NBA

Basis of most
encryption schemes:
(Message mod Key)

N)(modBD AD and
N) (mod CB CAThen

)(

11

)(

Cpt S 223. School of EECS, WSU

Series

 General

N

i
Nfffif

0
)(...)1()0()(

 Linearity

N

i

N

i

N

i
igifcigicf

00 0
)()())()((

 Arithmetic series

N NNi
2

)1(
i 1 2

12Cpt S 223. School of EECS, WSU

Series

 Geometric series
1

1
0

1

A
AA

N

N

i

N
i

l

10 if ;
1

1
00

A
A

AA
i

i
N

i

i

0Example
How many nodes
in a complete binary tree

15

2210

20

21

in a complete binary tree
of depth D?

2719123 22

A=2, N=D=2 (22+1-1) / (2-1)

13Cpt S 223. School of EECS, WSU

, () ()

7

Proofs
 What do we want to prove?

 Properties of a data structure always hold for all operations
Al ith ’ i ti / ill d Algorithm’s running time / memory will never exceed some
threshold

 Algorithm will always be correct
 Algorithm will always terminate

 Techniques
 Proof by induction Proof by induction
 Proof by counterexample
 Proof by contradiction

14Cpt S 223. School of EECS, WSU

Variation:
Ind/hyp: All values < k,
Ind/step: show for value=k

Proof by Induction
Ind/step: show for value k

 Goal: Prove some hypothesis is true
 Three-step processp p

1. Base case: Show hypothesis is true for some initial
conditions

2. Inductive hypothesis: Assume hypothesis is true for
all values ≤ k

3. Inductive step: Show hypothesis is true for next
larger value (typically k+1)

15

larger value (typically k+1)

Cpt S 223. School of EECS, WSU

Inductive Proof: Example

 Prove arithmetic series

 N NN)1(

h f

i

NNi
1 2

)1(

 Base case: Show true for N=1

 1)11(1

1 2
)11(11

i
i Base case verified

16Cpt S 223. School of EECS, WSU

Variation:

Example (cont.) Assume hyp for N<k, and
Check for N=k

 Ind/Hyp: Assume true for all N<=k
 Ind/Step: Now see if it is true for Ind/Step: Now see if it is true for

N=k+1
)1(

1

iki
kk

)1()1(2
2

)1()1(
11

kkk

kkk
ii

)2)(1(
2

)1()1(2

kk

kkk

17

2

Cpt S 223. School of EECS, WSU

More Examples for Induction
Proofs

 Prove the geometric series

 N N

i A 1 1

h h b f d

i

i

A
AA

0 1
1

 Prove that the number of nodes N in a
complete binary tree of depth D is

D 12D+1 -1

18Cpt S 223. School of EECS, WSU

Proof by Counterexample

Prove hypothesis is not true by giving an
example that doesn’t work
 Example: 2N > N2 ?
 Proof: N=2 (or 3 or 4)

 Proof by example?
 Proof by lots of examples?
 Proof by all possible examples?

 Empirical proof

19

 Hard when input size and contents can vary
arbitrarily Cpt S 223. School of EECS, WSU

Another Example for a proof
by Counterexample
Given N cities and costs for traveling between each pair

of cities, a “least-cost tour” is one which visits
every city exactly once with the least costevery city exactly once with the least cost

Hypothesis: Any sub-path within any least-cost tour will
also be a least-cost tour for those cities included in
the sub-path.

Is this hypothesis true?

…

Least-cost tour

20Cpt S 223. School of EECS, WSU

sub-path also least-cost

Proof by counterexample

 Counterexample
 Cost (ABCD) = 40 (optimal) Cost (ABCD) 40 (optimal)
 Cost (ABC) = 30
 Cost (ACB) = 20

Not the least cost tour
for {A,B,C}

 Cost (ACB) = 20

A B20

100

Least cost tour for
{A,B,C}

D C
10

10100
100

10

{A,B,C}

21

Conclusion: Least cost tours don’t necessarily contain smaller least cost tours

Cpt S 223. School of EECS, WSU

Proof by Contradiction

1. Start by assuming that the hypothesis
is falseis false

Show this assumption could lead to a2. Show this assumption could lead to a
contradiction (i.e., some known
property is violated)property is violated)

3. Therefore, hypothesis must be true
22Cpt S 223. School of EECS, WSU

Example for proof by
contradiction
Single pair shortest path problem

 Given N cities and costs for traveling between each pair of
cities find the least cost path to go from city X to city Ycities, find the least-cost path to go from city X to city Y

 Hypothesis: A least-cost path from X to Y contains least-cost
paths from X to every city on the path
 E.g., if XC1C2C3Y is a least-cost path from X to Y,

then
 XC1C2C3 must be a least-cost path from X to C3
 XC1C2 must be a least-cost path from X to C2
 XC1 must be a least-cost path from X to C1A B20

10100
100

Conclusion: Least cost paths should contain smaller least cost paths

23

D C
10

100 Conclusion: Least cost paths should contain smaller least cost paths
starting at the source

Cpt S 223. School of EECS, WSU

P

Proof by contradiction.. X C
Y

P’

 Let P be a least-cost path from X to Y
 Now, assume that the hypothesis is false:

 ==> there exists C along X->Y path, such that, there is a
better path from X to C than the one in P

 ==> So we could replace the subpath from X to C in P with
this lesser-cost path, to create a new path P’ from X to Y

 ==> Thus we now have a better path from X to Y
 i.e., cost(P’) < cost(P), () ()

 ==> But this violates the fact that P is a least-cost path
from X to Y

 (hence a contradiction!)

24

 (hence a contradiction!)

 Therefore, the original hypothesis must be true
24Cpt S 223. School of EECS, WSU

Mathematical Recurrence vs.
Recursion

A recursive function or a recursive
formula is defined in terms of itselfformula is defined in terms of itself

 Example:

0 if 1

!
n

n
Factorial (n)

if n = 0

 0 if)!1(

!
nnn

n
then return 1
else return (n * Factorial (n-1))

25Cpt S 223. School of EECS, WSU

Mathematical Recurrence Recursion (code)

Basic Rules of Recursion
 Base cases

 Must always have some base cases, which can be
solved without recursionsolved without recursion

 Making progress
 Recursive calls must always make progress toward

a base casea base case
 Design rule

 Assume all recursive calls work
 Compound interest rule

 Try not to duplicate work by solving the same
instance of a problem in separate recursive callsinstance of a problem in separate recursive calls

26Cpt S 223. School of EECS, WSU

Example

 Fibonacci numbers
 F(0) = 1 F(0) 1
 F(1) = 1
 F(n) = F(n-1) + F(n-2)

recurrence

 F(n) = F(n-1) + F(n-2)

Fibonacci (n)
if (n ≤ 1) recursive if (n ≤ 1)
then return 1
else return (Fibonacci (n-1) + Fibonacci (n-2))

code

27Cpt S 223. School of EECS, WSU

So, is there a better way to write the Fibonacci code?

Example (cont.)

 Computation tree for: Fibonacci (5)

F(5)

F(4) F(3)

F(3) F(2) F(1)F(2)

F(2) F(1) F(1) F(0)F(0) F(1)

F(1) F(0) Runtime for the recursive code (previous slide)
: is proportional to the size of the tree

28Cpt S 223. School of EECS, WSU

: and that is a lot wasteful.
: Why?

Running time for Fibonacci(n)?
 Show that the running time T(n) of Fibonacci(n) is

exponential in n
 Use mathematical induction

 We can show that T(n) < (5/3)n for n>=1

 Actually, this gives only an upper bound for
T(n) ()
 We also need to prove that T(n) is at least exponential

29Cpt S 223. School of EECS, WSU

Solving recurrences
 Example: Algo1(A,1,n)

// A is an integer array of size n
if(n<2) return;
x = floor(n/2)

H h ti d Al 1 t k ?

x = floor(n/2)
Algo1(A,1,x)
Algo1(A,x+1,n)

 How much time does Algo1 take?
 Express time as a function of n (input size)

 Let T(n) be the time taken by Algo1 on an Let T(n) be the time taken by Algo1 on an
input size n

 Then, T(n) = 1 + T(n/2) + T(n/2) , () (/) (/)
 = 2T(n/2) + 1

30Cpt S 223. School of EECS, WSU

Solving recurrences…
 Recurrence:

T(n) = 2T(n/2) + 1
T(1) = 1 (base case)() ()

 Solution:
 T(n) = 2T(n/2) + 1
 = 2[2T(n/22) + 1] + 1
 = 22T(n/22) + 2 + 1
 = 23T(n/23) + 22 + 2 + 1
 … (k steps)

2k (/2k) 2k 1 22 2 = 2kT(n/2k) + 2k-1 + … + 22 + 2 + 1
 For termination, n/2k = 1 k=lg n
 T(n) = 2lg nT(1) + n-1

2n 1 = 2n-1

31Cpt S 223. School of EECS, WSU

This is the closed form for T(n)

Ponder this

1. Do constants matter for asymptotic
analysis?analysis?

Recurrence vs Recursion2. Recurrence vs. Recursion
- A recurrence need not always be
implemented using recursionimplemented using recursion
- How?

32Cpt S 223. School of EECS, WSU

Recursive Function Calls
Notion of a “recursion” as a function calling a function (same or not)

Recursive Function Calls

M
M() {

A()
A() {
}

B() {
B()

C() {
D()

D() {
}

E() {
F()

F() {

Code structure: (guess)? Call tree:

A A B C

B
B

D E

EF

A()
A()
B()
C()

}

} B()
}

D()
E()

}

} F()
E()

}

}

EF

M

time

}

M

A A B

B

C

D E
Call
sequence

B F E
q

33Cpt S 223. School of EECS, WSU

Why is iterative code more desirable than tail recursive code?

Refer to the note on tail recursion on the lecture notes web page

Tail Recursion Iteration

M

A

time
A(n) {

A

A

A

Tail recursive code
…
A(n-1)

}
The result of A(n-1)
i NOT d d/ d

Last recursive callA(n) {

is NOT needed/used
in A(n)

M

A A A

Iteration

Last recursive call
replaced with
while() or for() loop

() {
for(i=n;i>=0;i--) {
…

}
} Iteration}

34Cpt S 223. School of EECS, WSU

Tower of Hanoi
Goal: Move all disks from peg A to peg B using peg C
Rules:
1 Move one disk at a time1. Move one disk at a time
2. Larger disks cannot be placed above smaller disks

Invented by a
A CB

Invented by a
French
Mathematician
Edouard Lucas,
18831883

Question: What is the minimum number of moves
necessary to solve the problem?

35Cpt S 223. School of EECS, WSU

Tower of Hanoi: Algorithm

 A Recursive Algorithm:
1. First, move the top n-1 disks, “recursively”, from A to C (using B)

h2. Move nth disk (ie., largest & bottom-most in A) from A to B
3. Then, move all the n-1 disks, “recursively”, from C to B (using A)

B

A

B

e(
n-

1,
C

,B
)

C 3)
 m

ov
e

Recursive steps
36Cpt S 223. School of EECS, WSU

Recursive Algorithm for Tower of
Hanoi (pseudocode)

src dst temp

 Move (n: disk, A, B, C)
 PRE: n disks on A; B and C unaffected
 POST: n disks on B; A and C unaffected
 BEGIN

 IF n=0 THEN RETURN
 Move (n-1, A,C,B)
 Move nth disk from A to B directly Move nth disk from A to B directly
 Move (n-1,C,B,A)

 END Tail Recursion

37Cpt S 223. School of EECS, WSU

Tower of Hanoi: Analysis
 Let T(n)= minimum number of moves required to solve the problem

 Analysis:
 T(1)=1 Base case
 T(n) = 2.T(n-1)+1 recurrence

 Solving this yields T(n)=2n-1 (how?)
 In the original Tower of Hanoi problem, n=8 & so T(n)=255 (which is g p , () (

fine!)

 For Tower of Brahma, n=64
 264-1 moves made by a priest in a temple 2 1 moves made by a priest in a temple
 Assuming each move takes 1 second, this would take 5,000,000,000

centuries to complete
 So lots of time before the world ends!

38Cpt S 223. School of EECS, WSU

Summary

 Floors, ceilings, exponents, logarithms,
series, and modular arithmeticseries, and modular arithmetic

 Proofs by mathematical induction,
counterexample and contradictioncounterexample and contradiction

 Recursion
l Solving recurrences

 Tools to help us analyze the
performance of our data structures and
algorithms 39Cpt S 223. School of EECS, WSU

Try it out yourself

 http://www.mazeworks.com/hanoi/index.htm

Cpt S 223. School of EECS, WSU 40

