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Why do we need math in a 
data structures course?

 To Analyze data structures and 
algorithmsalgorithms
 Deriving formulae for time and memory 

requirementsq
 Will the solution scale?
 Quantify the results Quantify the results

 Proving algorithm correctness
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Examples – how much “time” does
Definition: Let T(n) denote the time take by an algorithm on an input of size n.

Examples how much time  does 
each of these algorithms take? 

// A A i i t f i
Algorithm1 (A,n)

max = infinity

Algorithm2 (A, start, end)
if (n<2) return
mid = floor(n/2)

// Assume A is an integer array of size n

T(n)  n T(n)

max = -infinity
for (i=1 to n) {

if(A[i]>max) max=A[i];
}

mid = floor(n/2)
if (condition#1) 

Algorithm2 (A,1,mid)
else 

T(n/2)

Output max;

 ( ) 2 ( /2)

Algorithm2 (A,mid+1,n)

Algorithm3 (A,n)
if (n<2) return

 T(n)  T(n/2) + const.

T(n/2)

T(n)
 T(n) = 2 T(n/2) + const.

These are not a closed form yet. 
If l th ill t

if (n<2) return
x = floor(n/2)
Algorithm3 (A,1,x)
Algorithm3 (A,x+1,n)

T(n/2)
T(n/2)
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If you solve the recurrences, you will get,
O(lg n) for Algorithm2, and 
O(n) for Algorithm3



Example

 Consider Algorithm1 that divides the input 
array in half and calls Algorithm1 recursively 
on each half

Algorithm1 (A,n) T(n)g ( )
// A is an integer array of size n
if (n<2) return
x = floor(n/2)
Algorithm1 (A 1 x)

( )

T(n/2)

Constant time

 What is the running time of Algorithm1?

Algorithm1 (A,1,x)
Algorithm1 (A,x+1,n) T(n/2)

g g
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T(n) = T(n/2) + T(n/2) + const.

This is not a closed form yet. 



Floors and Ceilings

 floor(x), denoted      , is the greatest 
integer ≤ x

 x
integer ≤ x

 ceiling(x), denoted      , is the smallest 
integer ≥ x

 x
integer ≥ x

 Normally used to divide input into 
integral parts NN integral parts NNN
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Exponents
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Logarithms

1,0,,;loglog

X" base B of logarithm"   log
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A Our convention for the course:
lg n == log2 n
log n == log10 n
ln n == loge n

loglog

logloglog
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B PS: In Weiss book,
log n log n

logarithm"natural"...7182.2;logln
loglg
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logarithmnatural  ...7182.2;logln eAA e
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 What is the meaning of the log 
function?function?

For example lg 1024 For example, lg 1024 
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Example

 How many times to halve an array of 
length n until its length is 1?length n until its length is 1?

KeepHalving (n)
i = 0
while n ≠ 1

i = i + 1
n = floor(n/2)

return i

What will be the value of i?

return i
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Factorials
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Modular Arithmetic
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Series

 General 
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Series

 Geometric series
1
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How many nodes 
in a complete binary tree

15

2210

20

21

in a complete binary tree 
of depth D?

2719123 22

A=2, N=D=2 (22+1-1) / (2-1)
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Proofs
 What do we want to prove?

 Properties of a data structure always hold for all operations
Al ith ’ i ti / ill d Algorithm’s running time / memory will never exceed some 
threshold

 Algorithm will always be correct
 Algorithm will always terminate

 Techniques
 Proof by induction Proof by induction
 Proof by counterexample
 Proof by contradiction
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Variation:
Ind/hyp: All values < k, 
Ind/step: show for value=k

Proof by Induction
Ind/step: show for value k

 Goal: Prove some hypothesis is true
 Three-step processp p

1. Base case: Show hypothesis is true for some initial 
conditions

2. Inductive hypothesis: Assume hypothesis is true for 
all values ≤ k

3. Inductive step: Show hypothesis is true for next 
larger value (typically k+1)

15

larger value (typically k+1)
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Inductive Proof: Example

 Prove arithmetic series

 N NN )1(

h f
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NNi
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 Base case: Show true for N=1

 1 )11(1
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)11(11

i
i  Base case verified
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Variation:

Example (cont.) Assume hyp for N<k, and
Check for N=k

 Ind/Hyp: Assume true for all N<=k
 Ind/Step: Now see if it is true for Ind/Step: Now see if it is true for 

N=k+1
)1(
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More Examples for Induction 
Proofs

 Prove the geometric series


 N N

i A 1 1

h h b f d


 


i

i

A
AA

0 1
1

 Prove that the number of nodes N in a 
complete binary tree of depth D is   

D 12D+1 -1

18Cpt S 223. School of EECS, WSU



Proof by Counterexample

Prove hypothesis is not true by giving an 
example that doesn’t work
 Example: 2N > N2 ?   
 Proof: N=2  (or 3 or 4)

 Proof by example?
 Proof by lots of examples?
 Proof by all possible examples?

 Empirical proof
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Another Example for a proof 
by Counterexample
Given N cities and costs for traveling between each pair 

of cities, a “least-cost tour” is one which visits 
every city exactly once with the least costevery city exactly once with the least cost

Hypothesis: Any sub-path within any least-cost tour will 
also be a least-cost tour for those cities included in 
the sub-path.

Is this hypothesis true?

…

Least-cost tour
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sub-path also least-cost



Proof by counterexample

 Counterexample
 Cost (ABCD) = 40 (optimal) Cost (ABCD)  40 (optimal)
 Cost (ABC) = 30
 Cost (ACB) = 20

Not the least cost tour 
for {A,B,C}

 Cost (ACB) = 20

A B20

100

Least cost tour for 
{A,B,C}

D C
10

10100
100

10

{A,B,C}

21

Conclusion: Least cost tours don’t necessarily contain smaller least cost tours
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Proof by Contradiction

1. Start by assuming that the hypothesis 
is falseis false

Show this assumption could lead to a2. Show this assumption could lead to a 
contradiction (i.e., some known 
property is violated)property is violated)

3. Therefore, hypothesis must be true
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Example for proof by 
contradiction
Single pair shortest path problem 

 Given N cities and costs for traveling between each pair of 
cities find the least cost path to go from city X to city Ycities, find the least-cost path to go from city X to city Y

 Hypothesis: A least-cost path from X to Y contains least-cost 
paths from X to every city on the path
 E.g., if XC1C2C3Y is a least-cost path from X to Y, 

then
 XC1C2C3 must be a least-cost path from X to C3
 XC1C2 must be a least-cost path from X to C2
 XC1 must be a least-cost path from X to C1A B20

10100
100

Conclusion: Least cost paths should contain smaller least cost paths
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D C
10

100 Conclusion: Least cost paths should contain smaller least cost paths
starting at the source
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P

Proof by contradiction.. X C
Y

P’

 Let P be a least-cost path from X to Y
 Now, assume that the hypothesis is false:

 ==> there exists C along X->Y path, such that, there is a 
better path from X to C than the one in P

 ==> So we could replace the subpath from X to C in P with 
this lesser-cost path, to create a new path P’ from X to Y

 ==> Thus we now have a better path from X to Y
 i.e., cost(P’) < cost(P), ( ) ( )

 ==> But this violates the fact that P is a least-cost path 
from X to Y 

 (hence a contradiction!)

24

 (hence a contradiction!)

 Therefore, the original hypothesis must be true
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Mathematical Recurrence vs. 
Recursion

A recursive function or a recursive 
formula is defined in terms of itselfformula is defined in terms of itself

 Example:


 


0  if  1

!
n

n
Factorial (n)

if n = 0

  0 if  )!1(

!
nnn

n
then return 1
else return (n * Factorial (n-1))
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Mathematical Recurrence Recursion (code)



Basic Rules of Recursion
 Base cases

 Must always have some base cases, which can be 
solved without recursionsolved without recursion

 Making progress
 Recursive calls must always make progress toward 

a base casea base case
 Design rule

 Assume all recursive calls work
 Compound interest rule

 Try not to duplicate work by solving the same 
instance of a problem in separate recursive callsinstance of a problem in separate recursive calls
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Example

 Fibonacci numbers
 F(0) = 1 F(0)  1
 F(1) = 1
 F(n) = F(n-1) + F(n-2)

recurrence

 F(n) = F(n-1) + F(n-2)

Fibonacci (n)
if (n ≤ 1) recursive if (n ≤ 1)
then return 1
else return (Fibonacci (n-1) + Fibonacci (n-2))

code
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So, is there a better way to write the Fibonacci code?

Example (cont.)

 Computation tree for: Fibonacci (5)

F(5)

F(4) F(3)

F(3) F(2) F(1)F(2)

F(2) F(1) F(1) F(0)F(0) F(1)

F(1) F(0) Runtime for the recursive code (previous slide)
: is proportional to the size of the tree
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: and that is a lot wasteful. 
: Why?



Running time for Fibonacci(n)?
 Show that the running time T(n) of Fibonacci(n) is 

exponential in n
 Use mathematical induction

 We can show that T(n) < (5/3)n for n>=1

 Actually, this gives only an upper bound for 
T(n) ( )
 We also need to prove that T(n) is at least exponential
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Solving recurrences
 Example: Algo1(A,1,n)

// A is an integer array of size n
if(n<2) return;
x = floor(n/2)

H h ti d Al 1 t k ?

x = floor(n/2)
Algo1(A,1,x)
Algo1(A,x+1,n)

 How much time does Algo1 take?
 Express time as a function of n (input size)

 Let T(n) be the time taken by Algo1 on an Let T(n) be the time taken by Algo1 on an 
input size n

 Then, T(n) = 1 + T(n/2) + T(n/2) , ( ) ( / ) ( / )
 = 2T(n/2) + 1  
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Solving recurrences…
 Recurrence: 

T(n) = 2T(n/2) + 1
T(1) = 1 (base case)( ) ( )

 Solution:
 T(n) = 2T(n/2) + 1
 = 2[2T(n/22) + 1] + 1
 = 22T(n/22) + 2 + 1
 = 23T(n/23) + 22 + 2 + 1
 … (k steps)

2k ( /2k) 2k 1 22 2 = 2kT(n/2k) + 2k-1 + … + 22 + 2 + 1
 For termination, n/2k = 1   k=lg n
 T(n) = 2lg nT(1) + n-1

2n 1 = 2n-1
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This is the closed form for T(n)



Ponder this

1. Do constants matter for asymptotic 
analysis?analysis?

Recurrence vs Recursion2. Recurrence vs. Recursion
- A recurrence need not always be 
implemented using recursionimplemented using recursion
- How? 
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Recursive Function Calls
Notion of a “recursion” as a function calling a function (same or not)

Recursive Function Calls

M
M() {

A()
A() {
}

B() {
B()

C() {
D()

D() {
}

E() {
F()

F() {

Code structure: (guess)? Call tree:

A A B C

B
B

D E

EF

A()
A()
B()
C()

}

} B()
}

D()
E()

}

} F()
E()

}

}

EF

M

time

}

M

A A B

B

C

D E
Call 
sequence

B F E
q
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Why is iterative code more desirable than tail recursive code?

Refer to the note on tail recursion on the lecture notes web page

Tail Recursion  Iteration

M

A

time
A(n) {

A

A

A

Tail recursive code
…
A(n-1)

}
The result of A(n-1) 
i NOT d d/ d

Last recursive callA(n) {

is NOT needed/used 
in A(n)

M

A A A

Iteration

Last recursive call
replaced with
while() or for() loop 

( ) {
for(i=n;i>=0;i--) {
…

}
} Iteration}
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Tower of Hanoi
Goal: Move all disks from peg A to peg B using peg C
Rules:
1 Move one disk at a time1. Move one disk at a time
2. Larger disks cannot be placed above smaller disks

Invented by a
A CB

Invented by a 
French 
Mathematician 
Edouard Lucas, 
18831883

Question: What is the minimum number of moves 
necessary to solve the problem?
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Tower of Hanoi: Algorithm

 A Recursive Algorithm:
1. First, move the top n-1 disks, “recursively”, from A to C (using B)

h2. Move nth disk (ie., largest & bottom-most in A) from A to B
3. Then, move all the n-1 disks, “recursively”, from C to B (using A)

B

A

B

e(
n-

1,
C

,B
)

C 3)
 m

ov
e

Recursive steps
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Recursive Algorithm for Tower of 
Hanoi (pseudocode)

src dst temp

 Move (n: disk, A, B, C)
 PRE: n disks on A; B and C unaffected
 POST: n disks on B; A and C unaffected
 BEGIN

 IF n=0 THEN RETURN
 Move (n-1, A,C,B)
 Move nth disk from A to B directly Move nth disk from A to B directly
 Move (n-1,C,B,A) 

 END Tail Recursion
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Tower of Hanoi: Analysis
 Let T(n)= minimum number of moves required to solve the problem

 Analysis:
 T(1)=1  Base case
 T(n) = 2.T(n-1)+1  recurrence

 Solving this yields T(n)=2n-1 (how?)
 In the original Tower of Hanoi problem, n=8 & so T(n)=255 (which is g p , ( ) (

fine!)

 For Tower of Brahma, n=64
 264-1 moves made by a priest in a temple 2 1 moves made by a priest in a temple
 Assuming each move takes 1 second, this would take 5,000,000,000 

centuries to complete
 So lots of time before the world ends!
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Summary

 Floors, ceilings, exponents, logarithms, 
series, and modular arithmeticseries, and modular arithmetic

 Proofs by mathematical induction, 
counterexample and contradictioncounterexample and contradiction

 Recursion
l Solving recurrences

 Tools to help us analyze the 
performance of our data structures and 
algorithms 39Cpt S 223. School of EECS, WSU



Try it out yourself

 http://www.mazeworks.com/hanoi/index.htm
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