!'_ Math Review

Cpt S 223. School of EECS, WSU

Why do we need math in a
i data structures course?

s /0 Analyze data structures and
algorithms

= Deriving formulae for time and memory
requirements

= Will the solution scale?
« Quantify the results

= Proving algorithm correctness

Cpt S 223. School of EECS, WSU

Definition: Let T(n) denote the time take by an algorithm on an input of size n.

Examples — how much “time” does
each of these algorithms take?

I/ Assume A is an integer array of size n
Algorithm1 (A,n) T(n)z=n Algorithm2 (A, start, end) T(n)
if (n<2) return
mid = floor(n/2)
if (condition#1)
Algorithm2 (A,1,mid) T(n/2)

max = -infinity
for (i=1to n) {
if(A[i]>max) max=A[i];

} else
Output max; Algorithm?2 (A,mid+1,n)T|(n/2)
Algorithm3 (A,n) T(n) = T(n) = T(n/2) + const.
if (n<2) return = T(n) = 2 T(n/2) + const.
x = floor(n/2)
Algorithm3 (A,1,x) T(n/2)
Algorithm3 (A, x+1,n) ';'(n/2) These are not a closed form yet.
If you solve the recurrences, you will get,
O(lg n) for Algorithm2, and
O(n) for Algorithm3 3

Cpt S 223. School of EECS, WSU

i Example

= Consider Algorithm1 that divides the input
array in half and calls Algorithm1 recursively
on each half

Algorithm1 (A,n) T(n)
/I A'is an integer array of size n
if (N<2) returnr

Constant time

x = floor(n/2) — | T(n/2
Algorithm? (A1x) — (n/2)
Algorithm1 (A,x+1,n) T(n/2)

= What is the running time of Algorithm1?

T(n) =T(n/2) + T(n/2) + const.
This is not a closed form yet. Cpt'S 223. School of EECS, WSU

i Floors and Ceilings

= floor(x), denoted LXJ, IS the greatest
integer < x

= ceiling(x), denoted M, IS the smallest
integer = x

= Normally used to divide input into

integral parts LﬂJ{E} N
2 || 2

Cpt S 223. School of EECS, WSU

Cpt S 223. School of EECS, WSU

i Logarithms

log, B= A< X* =B "logarithm of B base X"

log, B= log, B , ABC>0A=1 Our convention for the course:
log: A lg n ==log, n
log AB=1logA+logB; AB>0 log n ==log;,n
A In n ==log, N
IogE =log A-logB

log A® =Blog A PS: In Weiss book,
log X <X forall X >0 log n = log,n
lgA=log, A

InA=log, A; e=2.7182... "natural logarithm"

Cpt S 223. School of EECS, WSU 7

+

= What is the meaning of the log
function?

« For example, Ig 1024

Cpt S 223. School of EECS, WSU

i Example

= How many times to halve an array of
length n until its length is 1?

KeepHalving (n)
1=0
while n # 1
=i+ 1 . _
n = floor(n/2) What will be the value of i?

return i

Cpt S 223. School of EECS, WSU

i Factorials

o 1if n=0
~lnx(=D1if n>0
nl<n"

nl=./2zn(n/e)"(1+6(1/n)) Stirling's approximation

n! == how many ways to order a set of n elements?

Cpt S 223. School of EECS, WSU

10

i Modular Arithmetic

AmodN =A—N=#|A/N |
(AmodN)=(BmodN)= A=B(modN)
"A1s congruent to B modulo N"
E.g.,81=61=1(mod10)

Basis of most

encryption schemes:

If A=B (modN) (Message mod Key)
Then A+C=B+C (mod N)
and AD = BD (mod N)

Cpt S 223. School of EECS, WSU

11

i Series

s General LfO)=10)+f@Q+..+ f(N)

= Linearity 2 f()+g@)=c2 f@i)+2> g()

= Arithmetic series ii = N('\;D

Cpt S 223. School of EECS, WSU

12

i Series

= Geometric series ya-A"-1

i A-1
N o0
ZA' SZA' ——— if0<A<l1l
=0 i=0 -
EXampIe 20
How manynodes = @) (@ 21

in @ complete binary tree
of depth D?

A=2, N=D=2 == (22*'-1)/(2-1)
=
Cpt S 223. School of EECS, WSU 13

i Proofs

= What do we want to prove?
= Properties of a data structure always hold for all operations
= Algorithm’s running time / memory will never exceed some
threshold
= Algorithm will always be correct
= Algorithm will always terminate

= Techniques
= Proof by induction
= Proof by counterexample
= Proof by contradiction

Cpt S 223. School of EECS, WSU

14

Variation:
Ind/hyp: All values <k,
Ind/step: show for value=k

Proof by Induction

= Goal: Prove some hypothesis is true

= [hree-step process

1. Base case: Show hypothesis is true for some initial
conditions

>. Inductive hypothesis: Assume hypothesis is true for
all values < k

3. Inductive step: Show hypothesis is true for next
larger value (typically k+1)

Cpt S 223. School of EECS, WSU 15

i Inductive Proof: Example

= Prove arithmetic series

Z'\':i:N(I\;Ll)

s Base case: Show true for N=1

i | =1= 1(1 + 1) = Base case verified
i1 2

Cpt S 223. School of EECS, WSU

16

Variation:

o Example (cont,) | By

= Ind/Hyp: Assume true for all N<=k
= Ind/Step: Now see if it is true for

N=k+1 kiu _ (k+1)+_zk:i
_ (k+1)+k(k2+l)
_ 2(k +1)+ k(k +1)
2
(k +1)(K +2)

2

Cpt S 223. School of EECS, WSU 17

More Examples for Induction

i Proofs

= Prove the geometric series

N _ N+l
S A AN 1
= A-1

= Prove that the number of nodes N in a
complete binary tree of depth D is
2D+1 _1

Cpt S 223. School of EECS, WSU

18

i Proof by Counterexample

Prove hypothesis is not true by giving an
example that doesn’t work
= Example; 2N = N2 ?
= Proof: N=2 (or 3 or 4)

= Proo ample?
= Proofby of examples?

= Proof by all possible examples?
« Empirical proof

=« Hard when input size and contents can vary
arbitrarily

Cpt S 223. School of EECS, WSU

19

Another Example for a proof
‘L by Counterexample

Given N cities and costs for traveling between each pair
of cities, a “/east-cost tour"” is one which visits
every city exactly once with the least cost

Hypothesis: Any sub-path within any least-cost tour will
also be a least-cost tour for those cities included in
the sub-path.

~

Is this hypothesis true?

Least-costtour

1
|

sub-path also least-cost

Cpt S 223. School of EECS, WSU 20

i Proof by counterexample

= Counterexample
= Cost (A=>B>C->D) = 40 (optimal)
s Cost (A%B%C) = 30 — | Not the least cost tour
for {A,B,C}
= Cost (A%C%B) = 20 \\

Least cost tour for
Q@ {A,B,C}
100 " 10
Am ©

Conclusion: Least cost tours don’t necessarily contain smaller least cost tours

Cpt S 223. School of EECS, WSU 21

i Proof by Contradiction

1.

Start by assuming that the hypothesis
is false

Show this assumption could lead to a
contradiction (i.e., some known
property is violated)

Therefore, hypothesis must be true

Cpt S 223. School of EECS, WSU 22

Example for proof by
contradiction

Single pair shortest path problem

= Given N cities and costs for traveling between each pair of
cities, find the least-cost path to go from city X to city Y

m | Hypothesis: A least-cost path from X to Y contains least-cost
paths from X to every city on the path

= E.g., if X2C12>C2>C3->Y is a least-cost path from Xto Y,
then

= X=2C1->C2->C3 must be a least-cost path from X to C3

= X=2>C1->C2 must be a least-cost path from X to C2

= X=>C1 must be a least-cost path from X to C1

Conclusion: Least cost paths should contain smaller least cost paths
starting at the source

Cpt S 223. School of EECS, WSU 23

P

Proof by contradiction.. @@

5
= Let P be a least-cost path from X to Y

= Now, assume that the hypothesis is false:

= ==> there exists C along X->Y path, such that, there is a
better path from X to C than the one in P

= ==> S0 we could replace the subpath from X to C in P with
this lesser-cost path, to create a new path P’ from Xto Y

= ==> Thus we now have a better path from Xto Y
= i.e., cost(P") < cost(P)

= ==> But this violates the fact that P is a least-cost path
fromXtoY

= (hencea contradiction!)L¢

= Therefore, the original hypothesis must be true
Cpt S 223. School of EECS, WSU 24

Mathematical Recurrence vs.

‘L Recursion

A recursive funcition or a recursive
formula i1s defined in terms of rtseffr

= Example:
1if n=0 Fac_;toriill (n)
nl= < ifn=20
nx(n-1!if n>0 then return 1

else return (n * Factorial (n-1))

Mathematical Recurrence Recursion (code)
Cpt S 223. School of EECS, WSU 25

i Basic Rules of Recursion

s Base cases

= Must always have some base cases, which can be
solved without recursion

= Making progress

= Recursive calls must always make progress toward
a base case

= Design rule
= Assume all recursive calls work

= Compound interest rule

= Try not to duplicate work by solving the same
instance of a problem in separate recursive calls

Cpt S 223. School of EECS, WSU 26

i Example

= Fibonacci numbers

[:(O) —_ 1 h
. :(1) =1 L recurrence
« F(n) = F(n-1) + F(n-2)

Fibonacci (n)
if((n<1)
then return 1
else return (Fibonacci (n-1) + Fibonacci (n-2))

Cpt S 223. School of EECS, WSU

recursive
code

27

So, is there a better way to write the Fibonacci code?

i Example (cont.)

s Computation tree for: Fibonacci (5)

P

F(1) || F(O) Runtime for the recursive code (previous slide)
: is proportional to the size of the tree
: and that is a lot wasteful.
: Why?
Cpt S 223. School of EECS, WSU 28

i Running time for Fibonacci(n)?

= Show that the running time T(n) of Fibonacci(n) is
exponential in n

= Use mathematical induction
= We can show that T(n) < (5/3)" for n>=1

= Actually, this gives only an upper bound for
T(n)

= We also need to prove that T(n) is at least exponential

Cpt S 223. School of EECS, WSU 29

i Solving recurrences

Example: |Algo1(A1,n)

Il A'is an integer array of size n
if(n<2) return;

x = floor(n/2)

Algo1(A,1,x)

Algo1(A,x+1,n)

How much time does Algol take?
= Express time as a function of n (input size)

Let T(n) be the time taken by Algol on an
Input size n
Then, T(n) =1 + T(n/2) + T(n/2)

= 2T(n/2) + 1

Cpt S 223. School of EECS, WSU

30

i Solving recurrences...

= Recurrence:
Tgng = 2T(n/2) + 1
T(1) =1 (base case)
= Solution:
T(n) = 2T(n/2) + 1
= 2[2T(n/2%) + 1] + 1
=2T(n/28) + 2 + 1
=23T(n/23) + 22+ 2+ 1
... (k steps)
=2KT(n/2%) + 2K1 + ..+ 22+ 2+ 1
For termination, n/2k=1 = k=Ign
T(n) = 29"T(1) + n-1
= 2n-1

This is the closed form for T(n)

Cpt S 223. School of EECS, WSU

31

i Ponder this

1.

Do constants matter for asymptotic
analysis?

Recurrence vs. Recursion

- A recurrence need not always be
implemented using recursion

- How?

Cpt S 223. School of EECS, WSU

32

Notion of a “recursion” as a function calling a function (same or not)

Recursive Function Calls

Code structure: (quess)? Call tree:
OO — y

M) { NHJBO{ CO{ DO ENL HFO(| ?&Q:\\??

- A()) B)f DOy i FOEy —

- AD S N =V gy AG AOG B ‘?
o S R B8O D %)\
S "% re ro

Call
sequ

Cpt S 223. School of EECS, WSU 33

Why is iterative code more desirable than tail recursive code?

Refer to the note on tail recursion on the lecture notes web page

* Tail Recursion = Iteration

» time

A(n) {

A(n-1) Tail recursive code

b\
\~_| The result of A(n-1)
1 is NOT needed/used

in A(n) 1

Am){ | Last recursive call
while() or for() loop

}} lteration”

Cpt S 223. School of EECS, WSU

Tower of Hanoi

Goal: Move all disks from peg A to peg B using peg C
Rules:

1. Move one disk at a time

2. Larger disks cannot be placed above smaller disks

Invented by a
French
Mathematician
Edouard Lucas,
1883

= b
L o e
sl | . i

Question: What is the minimum number of moves

necessary to solve the problem?

Cpt S 223. School of EECS, WSU 35

i Tower of Hanoi: Algorithm

= A Recursive Algorithm:

1. First, move the top n-1 disks, “recursively”, from A to C (using B)
2. Move nth disk (ie., largest & bottom-most in A) from A to B
5. Then, move all the n-1 disks, “recursively”, from C to B (using A)

“H

»
»

G
¥
s
(@)

3) move(n-1,C,B)

E

\ Recursive steps

Cpt S 223. School of EECS, WSU

36

Recursive Algorithm for Tower of
Hanoi (pseudocode)

src dst

. X / /temp
= Move (n: disk, A, B, C)

= PRE: n disks on A; B and C unaffected
= POST: n disks on B; A and C unaffected

= BEGIN
= IF n=0 THEN RETURN
= Move (n-1, A,C,B)
= Move nth disk from A to B directly
= Move (n-1,C,B,A)

= END T

~Tail Recursion

Cpt S 223. School of EECS, WSU

37

i Tower of Hanoi: Analysis

Let T(n)= minimum number of moves required to solve the problem

Analysis:
= T(1)=1 =» Base case
= T(n) =2.T(n-1)+1 =» recurrence

Solving this yields T(n)=2"-1 (how?)

1I:n th)e original Tower of Hanoi problem, n=8 & so T(n)=255 (which is
ine!

For Tower of Brahma, n=64
~ 291 moves made by a priest in a temple

-~ Assuming each move takes 1 second, this would take 5,000,000,000
centuries to complete

- So lots of time before the world ends!

Cpt S 223. School of EECS, WSU

38

i Summary

= Floors, ceilings, exponents, logarithms,
series, and modular arithmetic

= Proofs by mathematical induction,
counterexample and contradiction

= Recursion
= Solving recurrences

= Tools to help us analyze the
performance of our data structures and
algOritth Cpt S 223. School of EECS, WSU 39

‘L Try it out yourself

s http://www.mazeworks.com/hanoi/index.htm

Cpt S 223. School of EECS, WSU 40

