
Math ReviewMath Review

1Cpt S 223. School of EECS, WSU

Why do we need math in a
data structures course?

 To Analyze data structures and
algorithmsalgorithms
 Deriving formulae for time and memory

requirementsq
 Will the solution scale?
 Quantify the results Quantify the results

 Proving algorithm correctness

2Cpt S 223. School of EECS, WSU

Examples – how much “time” does
Definition: Let T(n) denote the time take by an algorithm on an input of size n.

Examples how much time does
each of these algorithms take?

// A A i i t f i
Algorithm1 (A,n)

max = infinity

Algorithm2 (A, start, end)
if (n<2) return
mid = floor(n/2)

// Assume A is an integer array of size n

T(n)  n T(n)

max = -infinity
for (i=1 to n) {

if(A[i]>max) max=A[i];
}

mid = floor(n/2)
if (condition#1)

Algorithm2 (A,1,mid)
else

T(n/2)

Output max;

 () 2 (/2)

Algorithm2 (A,mid+1,n)

Algorithm3 (A,n)
if (n<2) return

 T(n)  T(n/2) + const.

T(n/2)

T(n)
 T(n) = 2 T(n/2) + const.

These are not a closed form yet.
If l th ill t

if (n<2) return
x = floor(n/2)
Algorithm3 (A,1,x)
Algorithm3 (A,x+1,n)

T(n/2)
T(n/2)

3
Cpt S 223. School of EECS, WSU

If you solve the recurrences, you will get,
O(lg n) for Algorithm2, and
O(n) for Algorithm3

Example

 Consider Algorithm1 that divides the input
array in half and calls Algorithm1 recursively
on each half

Algorithm1 (A,n) T(n)g ()
// A is an integer array of size n
if (n<2) return
x = floor(n/2)
Algorithm1 (A 1 x)

()

T(n/2)

Constant time

 What is the running time of Algorithm1?

Algorithm1 (A,1,x)
Algorithm1 (A,x+1,n) T(n/2)

g g

4Cpt S 223. School of EECS, WSU
T(n) = T(n/2) + T(n/2) + const.

This is not a closed form yet.

Floors and Ceilings

 floor(x), denoted , is the greatest
integer ≤ x

 x
integer ≤ x

 ceiling(x), denoted , is the smallest
integer ≥ x

 x
integer ≥ x

 Normally used to divide input into
integral parts NN integral parts NNN











22

5Cpt S 223. School of EECS, WSU

Exponents

 BABA XXX

 BA
B

A

X
X
X

)( ABBA XX
X

1

2

222
2



NNN

NNNN XXXX

6

222 
Cpt S 223. School of EECS, WSU

Logarithms

1,0,,;loglog

X" base B of logarithm" log





ACBABB

BXAB

C
A

A
X

Our convention for the course:

0,;logloglog

,,,;
log

g


A

BABAAB
AC

A Our convention for the course:
lg n == log2 n
log n == log10 n
ln n == loge n

loglog

logloglog





ABA

BA
B
A

B PS: In Weiss book,
log n log n

logarithm"natural"...7182.2;logln
loglg

0 allfor log

2






eAA
AA

XXX log n  log2n

7

logarithmnatural ...7182.2;logln eAA e

Cpt S 223. School of EECS, WSU

 What is the meaning of the log
function?function?

For example lg 1024 For example, lg 1024

8Cpt S 223. School of EECS, WSU

Example

 How many times to halve an array of
length n until its length is 1?length n until its length is 1?

KeepHalving (n)
i = 0
while n ≠ 1

i = i + 1
n = floor(n/2)

return i

What will be the value of i?

return i

9Cpt S 223. School of EECS, WSU

Factorials

0 if)!1(
0 if 1

!
nnn

n
n










ionapproximatsStirling'))/1(1()/(n2n!

!

nen

nn
n

n

 



ppg))(()(

n! == how many ways to order a set of n elements?

10Cpt S 223. School of EECS, WSU

Modular Arithmetic

 
)(mod)mod()mod(

/mod



NBANBNA

NANANA

)10(mod16181 E.g.,
N" modulo B tocongruent isA "

)()()(



)(mod If

)(g

 NBA

Basis of most
encryption schemes:
(Message mod Key)

N)(modBD AD and
N) (mod CB CAThen

)(




11

)(

Cpt S 223. School of EECS, WSU

Series

 General 


N

i
Nfffif

0
)(...)1()0()(

 Linearity  
 


N

i

N

i

N

i
igifcigicf

00 0
)()())()((

 Arithmetic series  


N NNi
2

)1(
i 1 2

12Cpt S 223. School of EECS, WSU

Series

 Geometric series
1

1
0

1









A
AA

N

N

i

N
i

l

10 if ;
1

1
00









A
A

AA
i

i
N

i

i

0Example
How many nodes
in a complete binary tree

15

2210

20

21

in a complete binary tree
of depth D?

2719123 22

A=2, N=D=2 (22+1-1) / (2-1)

13Cpt S 223. School of EECS, WSU

, () ()

7

Proofs
 What do we want to prove?

 Properties of a data structure always hold for all operations
Al ith ’ i ti / ill d Algorithm’s running time / memory will never exceed some
threshold

 Algorithm will always be correct
 Algorithm will always terminate

 Techniques
 Proof by induction Proof by induction
 Proof by counterexample
 Proof by contradiction

14Cpt S 223. School of EECS, WSU

Variation:
Ind/hyp: All values < k,
Ind/step: show for value=k

Proof by Induction
Ind/step: show for value k

 Goal: Prove some hypothesis is true
 Three-step processp p

1. Base case: Show hypothesis is true for some initial
conditions

2. Inductive hypothesis: Assume hypothesis is true for
all values ≤ k

3. Inductive step: Show hypothesis is true for next
larger value (typically k+1)

15

larger value (typically k+1)

Cpt S 223. School of EECS, WSU

Inductive Proof: Example

 Prove arithmetic series

 N NN)1(

h f







i

NNi
1 2

)1(

 Base case: Show true for N=1

 1)11(1





1 2
)11(11

i
i  Base case verified

16Cpt S 223. School of EECS, WSU

Variation:

Example (cont.) Assume hyp for N<k, and
Check for N=k

 Ind/Hyp: Assume true for all N<=k
 Ind/Step: Now see if it is true for Ind/Step: Now see if it is true for

N=k+1
)1(

1

 


iki
kk

)1()1(2
2

)1()1(
11








kkk

kkk
ii

)2)(1(
2

)1()1(2







kk

kkk

17

2


Cpt S 223. School of EECS, WSU

More Examples for Induction
Proofs

 Prove the geometric series


 N N

i A 1 1

h h b f d


 


i

i

A
AA

0 1
1

 Prove that the number of nodes N in a
complete binary tree of depth D is

D 12D+1 -1

18Cpt S 223. School of EECS, WSU

Proof by Counterexample

Prove hypothesis is not true by giving an
example that doesn’t work
 Example: 2N > N2 ?
 Proof: N=2 (or 3 or 4)

 Proof by example?
 Proof by lots of examples?
 Proof by all possible examples?

 Empirical proof

19

 Hard when input size and contents can vary
arbitrarily Cpt S 223. School of EECS, WSU

Another Example for a proof
by Counterexample
Given N cities and costs for traveling between each pair

of cities, a “least-cost tour” is one which visits
every city exactly once with the least costevery city exactly once with the least cost

Hypothesis: Any sub-path within any least-cost tour will
also be a least-cost tour for those cities included in
the sub-path.

Is this hypothesis true?

…

Least-cost tour

20Cpt S 223. School of EECS, WSU

sub-path also least-cost

Proof by counterexample

 Counterexample
 Cost (ABCD) = 40 (optimal) Cost (ABCD) 40 (optimal)
 Cost (ABC) = 30
 Cost (ACB) = 20

Not the least cost tour
for {A,B,C}

 Cost (ACB) = 20

A B20

100

Least cost tour for
{A,B,C}

D C
10

10100
100

10

{A,B,C}

21

Conclusion: Least cost tours don’t necessarily contain smaller least cost tours

Cpt S 223. School of EECS, WSU

Proof by Contradiction

1. Start by assuming that the hypothesis
is falseis false

Show this assumption could lead to a2. Show this assumption could lead to a
contradiction (i.e., some known
property is violated)property is violated)

3. Therefore, hypothesis must be true
22Cpt S 223. School of EECS, WSU

Example for proof by
contradiction
Single pair shortest path problem

 Given N cities and costs for traveling between each pair of
cities find the least cost path to go from city X to city Ycities, find the least-cost path to go from city X to city Y

 Hypothesis: A least-cost path from X to Y contains least-cost
paths from X to every city on the path
 E.g., if XC1C2C3Y is a least-cost path from X to Y,

then
 XC1C2C3 must be a least-cost path from X to C3
 XC1C2 must be a least-cost path from X to C2
 XC1 must be a least-cost path from X to C1A B20

10100
100

Conclusion: Least cost paths should contain smaller least cost paths

23

D C
10

100 Conclusion: Least cost paths should contain smaller least cost paths
starting at the source

Cpt S 223. School of EECS, WSU

P

Proof by contradiction.. X C
Y

P’

 Let P be a least-cost path from X to Y
 Now, assume that the hypothesis is false:

 ==> there exists C along X->Y path, such that, there is a
better path from X to C than the one in P

 ==> So we could replace the subpath from X to C in P with
this lesser-cost path, to create a new path P’ from X to Y

 ==> Thus we now have a better path from X to Y
 i.e., cost(P’) < cost(P), () ()

 ==> But this violates the fact that P is a least-cost path
from X to Y

 (hence a contradiction!)

24

 (hence a contradiction!)

 Therefore, the original hypothesis must be true
24Cpt S 223. School of EECS, WSU

Mathematical Recurrence vs.
Recursion

A recursive function or a recursive
formula is defined in terms of itselfformula is defined in terms of itself

 Example:


 


0 if 1

!
n

n
Factorial (n)

if n = 0

  0 if)!1(

!
nnn

n
then return 1
else return (n * Factorial (n-1))

25Cpt S 223. School of EECS, WSU

Mathematical Recurrence Recursion (code)

Basic Rules of Recursion
 Base cases

 Must always have some base cases, which can be
solved without recursionsolved without recursion

 Making progress
 Recursive calls must always make progress toward

a base casea base case
 Design rule

 Assume all recursive calls work
 Compound interest rule

 Try not to duplicate work by solving the same
instance of a problem in separate recursive callsinstance of a problem in separate recursive calls

26Cpt S 223. School of EECS, WSU

Example

 Fibonacci numbers
 F(0) = 1 F(0) 1
 F(1) = 1
 F(n) = F(n-1) + F(n-2)

recurrence

 F(n) = F(n-1) + F(n-2)

Fibonacci (n)
if (n ≤ 1) recursive if (n ≤ 1)
then return 1
else return (Fibonacci (n-1) + Fibonacci (n-2))

code

27Cpt S 223. School of EECS, WSU

So, is there a better way to write the Fibonacci code?

Example (cont.)

 Computation tree for: Fibonacci (5)

F(5)

F(4) F(3)

F(3) F(2) F(1)F(2)

F(2) F(1) F(1) F(0)F(0) F(1)

F(1) F(0) Runtime for the recursive code (previous slide)
: is proportional to the size of the tree

28Cpt S 223. School of EECS, WSU

: and that is a lot wasteful.
: Why?

Running time for Fibonacci(n)?
 Show that the running time T(n) of Fibonacci(n) is

exponential in n
 Use mathematical induction

 We can show that T(n) < (5/3)n for n>=1

 Actually, this gives only an upper bound for
T(n) ()
 We also need to prove that T(n) is at least exponential

29Cpt S 223. School of EECS, WSU

Solving recurrences
 Example: Algo1(A,1,n)

// A is an integer array of size n
if(n<2) return;
x = floor(n/2)

H h ti d Al 1 t k ?

x = floor(n/2)
Algo1(A,1,x)
Algo1(A,x+1,n)

 How much time does Algo1 take?
 Express time as a function of n (input size)

 Let T(n) be the time taken by Algo1 on an Let T(n) be the time taken by Algo1 on an
input size n

 Then, T(n) = 1 + T(n/2) + T(n/2) , () (/) (/)
 = 2T(n/2) + 1

30Cpt S 223. School of EECS, WSU

Solving recurrences…
 Recurrence:

T(n) = 2T(n/2) + 1
T(1) = 1 (base case)() ()

 Solution:
 T(n) = 2T(n/2) + 1
 = 2[2T(n/22) + 1] + 1
 = 22T(n/22) + 2 + 1
 = 23T(n/23) + 22 + 2 + 1
 … (k steps)

2k (/2k) 2k 1 22 2 = 2kT(n/2k) + 2k-1 + … + 22 + 2 + 1
 For termination, n/2k = 1  k=lg n
 T(n) = 2lg nT(1) + n-1

2n 1 = 2n-1

31Cpt S 223. School of EECS, WSU

This is the closed form for T(n)

Ponder this

1. Do constants matter for asymptotic
analysis?analysis?

Recurrence vs Recursion2. Recurrence vs. Recursion
- A recurrence need not always be
implemented using recursionimplemented using recursion
- How?

32Cpt S 223. School of EECS, WSU

Recursive Function Calls
Notion of a “recursion” as a function calling a function (same or not)

Recursive Function Calls

M
M() {

A()
A() {
}

B() {
B()

C() {
D()

D() {
}

E() {
F()

F() {

Code structure: (guess)? Call tree:

A A B C

B
B

D E

EF

A()
A()
B()
C()

}

} B()
}

D()
E()

}

} F()
E()

}

}

EF

M

time

}

M

A A B

B

C

D E
Call
sequence

B F E
q

33Cpt S 223. School of EECS, WSU

Why is iterative code more desirable than tail recursive code?

Refer to the note on tail recursion on the lecture notes web page

Tail Recursion  Iteration

M

A

time
A(n) {

A

A

A

Tail recursive code
…
A(n-1)

}
The result of A(n-1)
i NOT d d/ d

Last recursive callA(n) {

is NOT needed/used
in A(n)

M

A A A

Iteration

Last recursive call
replaced with
while() or for() loop

() {
for(i=n;i>=0;i--) {
…

}
} Iteration}

34Cpt S 223. School of EECS, WSU

Tower of Hanoi
Goal: Move all disks from peg A to peg B using peg C
Rules:
1 Move one disk at a time1. Move one disk at a time
2. Larger disks cannot be placed above smaller disks

Invented by a
A CB

Invented by a
French
Mathematician
Edouard Lucas,
18831883

Question: What is the minimum number of moves
necessary to solve the problem?

35Cpt S 223. School of EECS, WSU

Tower of Hanoi: Algorithm

 A Recursive Algorithm:
1. First, move the top n-1 disks, “recursively”, from A to C (using B)

h2. Move nth disk (ie., largest & bottom-most in A) from A to B
3. Then, move all the n-1 disks, “recursively”, from C to B (using A)

B

A

B

e(
n-

1,
C

,B
)

C 3)
 m

ov
e

Recursive steps
36Cpt S 223. School of EECS, WSU

Recursive Algorithm for Tower of
Hanoi (pseudocode)

src dst temp

 Move (n: disk, A, B, C)
 PRE: n disks on A; B and C unaffected
 POST: n disks on B; A and C unaffected
 BEGIN

 IF n=0 THEN RETURN
 Move (n-1, A,C,B)
 Move nth disk from A to B directly Move nth disk from A to B directly
 Move (n-1,C,B,A)

 END Tail Recursion

37Cpt S 223. School of EECS, WSU

Tower of Hanoi: Analysis
 Let T(n)= minimum number of moves required to solve the problem

 Analysis:
 T(1)=1  Base case
 T(n) = 2.T(n-1)+1  recurrence

 Solving this yields T(n)=2n-1 (how?)
 In the original Tower of Hanoi problem, n=8 & so T(n)=255 (which is g p , () (

fine!)

 For Tower of Brahma, n=64
 264-1 moves made by a priest in a temple 2 1 moves made by a priest in a temple
 Assuming each move takes 1 second, this would take 5,000,000,000

centuries to complete
 So lots of time before the world ends!

38Cpt S 223. School of EECS, WSU

Summary

 Floors, ceilings, exponents, logarithms,
series, and modular arithmeticseries, and modular arithmetic

 Proofs by mathematical induction,
counterexample and contradictioncounterexample and contradiction

 Recursion
l Solving recurrences

 Tools to help us analyze the
performance of our data structures and
algorithms 39Cpt S 223. School of EECS, WSU

Try it out yourself

 http://www.mazeworks.com/hanoi/index.htm

Cpt S 223. School of EECS, WSU 40

