WASHINGTON STATE
G (UNIVERSITY
h

CptS 122 - Data Structures

Data Structures
Trees

Nirmalya Roy

School of Electrical Engineering and Computer Science
Washington State University

Motivation

m Trees are one of the most important and extensively
used data structures in computer science

m File systems of several popular operating systems are
implemented as trees

o For example

My Documents/

My Pictures/
0001.jpg
0002.jpg

My Videos/

Nice.mpg
My Music/
School Files/
CptS223/

FunStuffs/

Topics

m Binary Trees
m Binary Search Tree

O 1nsertNode, deleteNode

O 1nOrder, preOrder, postOrder

m Applications
o0 Duplicate elimination, Searching etc

Trees

m Linked lists, stacks and queues are linear data
structures.

m Atreeis anonlinear, two-dimensional data
structure with special properties.

m [ree nodes contain two or more links.

] oot node pointer

Trees (Cont.)

Binary trees "o | U N e
. . containing B | ! j : containing

o trees whose nodes all contain two links e / |

(none, one, or both of which may be NULL). | |

The root node 1s the first node In a tree.
Each link in the root node refers to a child.

The left child is the first node in the left subtree, and the right
child is the first node in the right subtree.

The children of a node are called siblings.
A node with no children is called a leaf node.
Computer scientists normally draw trees

from the root node down
o exactly the opposite of trees in nature.

Trees (Cont.)

root node pointer

left subtree right subtree

| 1 |
: | 1 |
of node 1 A : : D : of node
containing B : : : / : containing B

e e e e e — o

I :

1 |

1 |

1 |

1 1

Fig. 12.17 | Binary tree graphical representation.

Trees (Cont.)

m A special binary tree is called a binary search tree.

m A binary search tree (with no duplicate node values) has
following properties.
o the values in any left subtree are less than the value in its parent node.
o the values in any right subtree are greater than the value in its parent
node.
m The shape of the binary search tree that corresponds to a set of

data can vary, depending on the order in which the values are
Inserted into the tree.

Trees (Cont.)

m Operations or functions

O

O
O
O

Inserting a node into the tree
Deleting a node from the tree
Searching a node in the tree

Traversals
m |norder
m Preorder
m Postorder

Trees self-referential structure

O~ nh WN =

root node pointer

// Fig. 12.19: figl2_19.c
// Creating and traversing a binary tree ‘7(///’ : ‘\\\\\‘
// preorder, inorder, and postorder iebme & = P TG .

left subtree !

#include <stdio.h> contaning 8 | : L /’ -
#include <stdlib.h> Pemmmmomeoes E
#include <time.h>
// self-referential structure
struct treeNode {

struct treeNode *leftPtr; // pointer to left subtree

int data; // node value

struct treeNode *rightPtr; // pointer to right subtree

}; // end structure treeNode

typedef struct treeNode TreeNode; // synonym for struct treeNode
typedef TreeNode *TreeNodePtr; // synonym for TreeNode*

// prototypes
void insertNode(TreeNodePtr *treePtr, int value);

void inOrder(TreeNodePtr treePtr);
void preOrder(TreeNodePtr treePtr);
void postOrder(TreeNodePtr treePtr);

. 12,19 | Creating and traversing a binary tree. (Part | of 5.)

right subtree
of node
containing B

Trees Example

24 // function main begins program execution
25 1int main(void)

26 {

27 unsigned int 1i; // counter to loop from 1-10

28 int item; // variable to hold random values

29 TreeNodePtr rootPtr = ; // tree initially empty
30

31 srand(time(D

32 puts()
33

34 // insert random values between 0 and 14 1in the tree
35 for (1 =1; 1 <= po++1)

36 item = rand() % ;

37 printf(, 1tem);

38 insertNode(&rootPtr, item);

39 } // end for

40

41 // traverse the tree preQrder

42 puts(D

43 preOrder(rootPtr);

44

45 // traverse the tree inOrder

46 puts()

47 inOrder(rootPtr);

Fig. 12.19 | Creating and traversing a binary tree. (Part 2 of 5.)

Function 1insertNode

48

49 // traverse the tree postOrder

50 puts();
51 postOrder(rootPtr);

52 1} // end main

53

54 // insert node into tree
55 wvoid insertNode(TreeNodePtr *treePtr, int value)
56 {

57 // 1f tree 1is empty

58 if (*treePtr ==) {

59 *treePtr = malloc(sizeof(TreeNode));

60

61 // 1f memory was allocated, then assign data
62 if (*treePtr = Yy {

63 (*treePtr)->data = value;

64 (*treePtr)->leftPtr = ;

65 (*treePtr)->rightPtr = ;

66 } // end if

67 else {

68 printf(, value);
69 } // end else

70 } // end if

Fig. 12.19 | Creating and traversing a binary tree. (Part 3 of 5.)

Function 1insertNode

71 else { // tree is not empty

72 // data to insert is less than data in current node

73 if (value < (*treePtr)->data) {

74 insertNode(&((*treePtr)-=leftPtr), value);

75 } // end if

76

7 // data to insert is greater than data in current node
78 else if (value > (*treePtr)->data) {

79 insertNode(&((*treePtr)->rightPtr), value);
80 Y} // end else if

81 else { // duplicate data value ignored

82 printf(s, Tdup”);

83 /7 end else

84 } // end else

85 1} // end function insertNode

86 oot node pointer

left subtree right subtree

! : \
of node 1 A : D : of node
containing B | : / ' containing B
lemmmm e = ! |
I]
1 I
1 |
1 I
1 |

Function 1nsertNode

m The function used to create a binary search tree Is
recursive.

m Function 1TnsertNode receives the address of the
tree and an integer to be stored in the tree as
arguments.

m A node can be inserted only as a leaf node in a
binary search tree.

Function insertNode (Cont.)

m The steps for inserting a node in a binary search
tree are as follows:

O
O

O

If *treePtr i1s NULL, create a new node.

Call mal loc, assign the allocated memory to
*treePtr,

Assignto (*treePtr)->data the integer to be
stored,

Assignto (*treePtr)->leftPtr and
(*treePtr)->rightPtr the value NULL

Return control to the caller (either main or a
previous call to 1nsertNode).

Function insertNode (Cont.)

O

If the value of *treePtr i1s not NULL and the value to

be inserted is less than (*treePtr)->data,

= function 1nsertNode is called with the address of (*treePtr)-
>TeftPtr toinsert the node in the left subtree of the node pointed to by
treePtr.

If the value to be inserted Is greater than
(*treePtr)->data,

= function 1nsertNode is called with the address of (*treePtr)-
>rightPtr to insert the node in the right subtree of the node pointed to
by treePtr.

Otherwise, the recursive steps continue until a NULL
pointer is found, then Step 1 is executed to insert the
new node.

Tree Traversal Function

m [he functions used to traverse the tree are recursive.

m Traversal functions are TnOrder, preOrder and
postOrder.

m Each receive a tree (i.e., the pointer to the root node of
the tree) and traverse the tree.

Traversals: Function inOrder

m The steps for an 1nOrder traversal are: left, root, right
o Traverse the left subtree 1nOrder.
o Process the value in the node.
o Traverse the right subtree 1nOrder.

m The value in a node is not processed until the values in its left
subtree are processed.

m The 1nOrder traversal of the tree is:
= 6 13 17 27 33 42 48

27

/\

13 42

AM

b 17 33 48

Fig. 12.21 | Binary search tree with seven nodes.

1nOrder Function

m 1noOrder traversal is: left, root, right

87 // begin inorder traversal of tree

88 void inOrder(TreeNodePtr treePtr) 27

89 {

90 // 1f tree is not empty, then traverse /\

91 if (treePtr != N It 13 4?2

92 inOrder(treePtr->leftPtr); T~ T~
93 printf(, treePtr->data); 6 17 33 48
94 inOrder(treePtr->rightPtr);

95 } // end if

96 1} // end function inOrder

Traversals: Function inOrder

s The 1nOrder traversal of a binary search tree
prints the node values in ascending order.

m The process of creating a binary search tree actually
sorts the data

o this process Is called the binary tree sort.

Traversals: Function preOrder

m The steps fora preOrder traversal are: root, left, right
o Process the value in the node.
o Traverse the left subtree preorder.
o Traverse the right subtree preorder.

m The value in each node Is processed as the node is visited.

o After the value in a given node is processed, the values in the
left subtree are processed, then those in the right subtree are
processed.

m The preOrder traversal of the tree is:
= 27 13 6 17 42 33 48

27

13 42

preOrder Function

m preorder traversal is: root, left, right

97
98 // begin preorder traversal of tree
99 void preOrder(TreeNodePtr treePtr)

100 {

101 // 1f tree is not empty, then traverse
102 if (treePtr !=) £

103 printf(, treePtr->data);

104 preOrder(treePtr->leftPtr);

105 preOrder(treePtr->rightPtr);

106 } // end if
107 } // end function preOrder

Traversals: Function postOrder

m The steps for a postOrder traversal are: left, right, root
o Traverse the left subtree postOrder.
o Traverse the right subtree postOrder.
o Process the value in the node.

m The value in each node is not printed until the values of its
children are printed.

m The postOrder traversal of the tree is:
= 6 17 13 33 48 42 27

27

13 42

prostOrder Function

m postorder traversal is: left, right, root

109 // begin postorder traversal of tree
110 void postOrder(TreeNodePtr treePtr)
1 {

112 // 1f tree is not empty, then traverse
113 if (treePtr != i

114 postOrder(treePtr->leftPtr);

115 postOrder(treePtr->rightPtr);

116 printf(, treePtr->data);

17 } // end if
118 } // end function postOrder

BST Applications: Duplicate Elimination

m The binary search tree facilitates duplicate elimination.
m An attempt to insert a duplicate value will be recognized

o a duplicate will follow the same “go left” or “go right”
decisions on each comparison as the original value did.

m The duplicate will eventually be compared with a node
In the tree containing the same value.

m The duplicate value may simply be discarded at this
point.

Binary Tree Search

m Searching a binary tree for a value that matches a key
value Is fast.

m If the tree is tightly packed, each level contains about
twice as many elements as the previous level.

m A binary search tree with n elements would have a
maximum of log,n levels.

o a maximum of log,n comparisons would have to be made
either to find a match or to determine that no match exists.

m Searching a (tightly packed) 1,000,000 element binary
search tree requires no more than 20 comparisons
o 229>1,000,000.

Other Binary Tree Operations

m The level order traversal of a binary tree visits the
nodes of the tree row-by-row starting at the root node
level.

o On each level of the tree, the nodes are visited from left to
right.

o The level order traversal is not a recursive algorithm.

Exercise

m Implement the level order binary tree traversal using
a common data structure we have discussed in the

class.
o Write the pseudo code of this algorithm.

Level Order Binary Tree Traversal

Use the Queue data structure to control the output of
the level order binary tree traversal.

Algorithm
o Insert/enqueue the root node in the queue

o While there are nodes left in the queue,

Get/dequeue the node in the queue

Print the node’s value

If the pointer to the left child of the node is not null

O Insert/enqueue the left child node in the queue
If the pointer to the right child of the node is not null

O Insert/enqueue the right child node in the queue
27

/\

13 42

P i

b 17 33 48

Other Common Tree Data Strictures

m Binary search trees (BSTs)
o Support O(log, N) operations

o Balanced trees
m AVL trees, Splay trees

m B-trees for accessing secondary storage

Conclusions

m Accessing elements in a linear linked list can be
prohibitive especially for large amounts of input.

m Trees are simple data structures for which the
running time of most operations is O(log N) on
average.

m For example, if N =1 million:

o Searching an element in a linear linked list requires at
most O(N) comparisons (i.e. 1 million comparisons)

o Searching an element in a binary search tree (a kind of
tree) requires O(log, N) comparisons (= 20 comparisons)

