
Nirmalya Roy

School of Electrical Engineering and Computer Science
Washington State University

Cpt S 122 – Data Structures

Data Structures
Trees

Motivation

 Trees are one of the most important and extensively
used data structures in computer science

 File systems of several popular operating systems are
implemented as trees

 For example

My Documents/

My Pictures/

0001.jpg

0002.jpg

My Videos/

Nice.mpg

My Music/

School Files/

CptS223/

FunStuffs/

Topics

 Binary Trees

 Binary Search Tree
 insertNode, deleteNode

 inOrder, preOrder, postOrder

 Applications

 Duplicate elimination, Searching etc

Trees

 Linked lists, stacks and queues are linear data

structures.

 A tree is a nonlinear, two-dimensional data

structure with special properties.

 Tree nodes contain two or more links.

Trees (Cont.)

 Binary trees

 trees whose nodes all contain two links

(none, one, or both of which may be NULL).

 The root node is the first node in a tree.

 Each link in the root node refers to a child.

 The left child is the first node in the left subtree, and the right
child is the first node in the right subtree.

 The children of a node are called siblings.

 A node with no children is called a leaf node.

 Computer scientists normally draw trees

from the root node down

 exactly the opposite of trees in nature.

Trees (Cont.)

Trees (Cont.)

 A special binary tree is called a binary search tree.

 A binary search tree (with no duplicate node values) has

following properties.

 the values in any left subtree are less than the value in its parent node.

 the values in any right subtree are greater than the value in its parent

node.

 The shape of the binary search tree that corresponds to a set of

data can vary, depending on the order in which the values are

inserted into the tree.

Trees (Cont.)

 Operations or functions

 Inserting a node into the tree

 Deleting a node from the tree

 Searching a node in the tree

 Traversals
 Inorder

 Preorder

 Postorder

Trees self-referential structure

Trees Example

Function insertNode

Function insertNode

Function insertNode

 The function used to create a binary search tree is

recursive.

 Function insertNode receives the address of the

tree and an integer to be stored in the tree as

arguments.

 A node can be inserted only as a leaf node in a

binary search tree.

Function insertNode(Cont.)

 The steps for inserting a node in a binary search
tree are as follows:
 If *treePtr is NULL, create a new node.

 Call malloc, assign the allocated memory to
*treePtr,

 Assign to (*treePtr)->data the integer to be
stored,

 Assign to (*treePtr)->leftPtr and
(*treePtr)->rightPtr the value NULL

 Return control to the caller (either main or a
previous call to insertNode).

 If the value of *treePtr is not NULL and the value to
be inserted is less than (*treePtr)->data,
 function insertNode is called with the address of (*treePtr)-

>leftPtr to insert the node in the left subtree of the node pointed to by
treePtr.

 If the value to be inserted is greater than
(*treePtr)->data,
 function insertNode is called with the address of (*treePtr)-

>rightPtr to insert the node in the right subtree of the node pointed to
by treePtr.

 Otherwise, the recursive steps continue until a NULL
pointer is found, then Step 1 is executed to insert the
new node.

Function insertNode(Cont.)

Tree Traversal Function

 The functions used to traverse the tree are recursive.

 Traversal functions are inOrder, preOrder and

postOrder.

 Each receive a tree (i.e., the pointer to the root node of

the tree) and traverse the tree.

Traversals: Function inOrder

 The steps for an inOrder traversal are: left, root, right

 Traverse the left subtree inOrder.

 Process the value in the node.

 Traverse the right subtree inOrder.

 The value in a node is not processed until the values in its left
subtree are processed.

 The inOrder traversal of the tree is:
 6 13 17 27 33 42 48

inOrder Function

 inOrder traversal is: left, root, right

Traversals: Function inOrder

 The inOrder traversal of a binary search tree

prints the node values in ascending order.

 The process of creating a binary search tree actually

sorts the data

 this process is called the binary tree sort.

Traversals: Function preOrder

 The steps for a preOrder traversal are: root, left, right

 Process the value in the node.

 Traverse the left subtree preOrder.

 Traverse the right subtree preOrder.

 The value in each node is processed as the node is visited.

 After the value in a given node is processed, the values in the

left subtree are processed, then those in the right subtree are

processed.

 The preOrder traversal of the tree is:
 27 13 6 17 42 33 48

preOrder Function

 preOrder traversal is: root, left, right

Traversals: Function postOrder

 The steps for a postOrder traversal are: left, right, root

 Traverse the left subtree postOrder.

 Traverse the right subtree postOrder.

 Process the value in the node.

 The value in each node is not printed until the values of its

children are printed.

 The postOrder traversal of the tree is:
 6 17 13 33 48 42 27

postOrder Function

 postOrder traversal is: left, right, root

BST Applications: Duplicate Elimination

 The binary search tree facilitates duplicate elimination.

 An attempt to insert a duplicate value will be recognized

 a duplicate will follow the same “go left” or “go right”

decisions on each comparison as the original value did.

 The duplicate will eventually be compared with a node

in the tree containing the same value.

 The duplicate value may simply be discarded at this

point.

Binary Tree Search

 Searching a binary tree for a value that matches a key
value is fast.

 If the tree is tightly packed, each level contains about
twice as many elements as the previous level.

 A binary search tree with n elements would have a
maximum of log2n levels.

 a maximum of log2n comparisons would have to be made
either to find a match or to determine that no match exists.

 Searching a (tightly packed) 1,000,000 element binary

search tree requires no more than 20 comparisons

 220 > 1,000,000.

Other Binary Tree Operations

 The level order traversal of a binary tree visits the

nodes of the tree row-by-row starting at the root node

level.

 On each level of the tree, the nodes are visited from left to

right.

 The level order traversal is not a recursive algorithm.

Exercise

 Implement the level order binary tree traversal using

a common data structure we have discussed in the

class.

 Write the pseudo code of this algorithm.

Level Order Binary Tree Traversal

 Use the Queue data structure to control the output of
the level order binary tree traversal.

 Algorithm

 Insert/enqueue the root node in the queue

 While there are nodes left in the queue,
 Get/dequeue the node in the queue

 Print the node’s value

 If the pointer to the left child of the node is not null

 Insert/enqueue the left child node in the queue

 If the pointer to the right child of the node is not null

 Insert/enqueue the right child node in the queue

Other Common Tree Data Strictures

 Binary search trees (BSTs)

 Support O(log2 N) operations

 Balanced trees
 AVL trees, Splay trees

 B-trees for accessing secondary storage

Conclusions

 Accessing elements in a linear linked list can be
prohibitive especially for large amounts of input.

 Trees are simple data structures for which the
running time of most operations is O(log N) on
average.

 For example, if N = 1 million:
 Searching an element in a linear linked list requires at

most O(N) comparisons (i.e. 1 million comparisons)

 Searching an element in a binary search tree (a kind of
tree) requires O(log2 N) comparisons (20 comparisons)

