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Motivation 

 Trees are one of the most important and extensively 
used data structures in computer science

 File systems of several popular operating systems are 
implemented as trees

 For example

My Documents/

My Pictures/

0001.jpg

0002.jpg

My Videos/

Nice.mpg

My Music/

School Files/

CptS223/

FunStuffs/



Topics

 Binary Trees

 Binary Search Tree
 insertNode, deleteNode

 inOrder, preOrder, postOrder

 Applications

 Duplicate elimination, Searching etc



Trees

 Linked lists, stacks and queues are linear data 

structures.

 A tree is a nonlinear, two-dimensional data 

structure with special properties.

 Tree nodes contain two or more links.



Trees (Cont.)

 Binary trees

 trees whose nodes all contain two links 

(none, one, or both of which may be NULL).

 The root node is the first node in a tree.

 Each link in the root node refers to a child.

 The left child is the first node in the left subtree, and the right 
child is the first node in the right subtree.

 The children of a node are called siblings.

 A node with no children is called a leaf node.

 Computer scientists normally draw trees 

from the root node down

 exactly the opposite of trees in nature.



Trees (Cont.)



Trees (Cont.)

 A special binary tree is called a binary search tree.

 A binary search tree (with no duplicate node values) has 

following properties. 

 the values in any left subtree are less than the value in its parent node. 

 the values in any right subtree are greater than the value in its parent 

node.

 The shape of the binary search tree that corresponds to a set of 

data can vary, depending on the order in which the values are 

inserted into the tree.



Trees (Cont.)

 Operations or functions

 Inserting a node into the tree

 Deleting a node from the tree

 Searching a node in the tree

 Traversals
 Inorder

 Preorder

 Postorder



Trees self-referential structure



Trees Example



Function insertNode



Function insertNode



Function insertNode

 The function used to create a binary search tree is 

recursive.

 Function insertNode receives the address of the 

tree and an integer to be stored in the tree as 

arguments.

 A node can be inserted only as a leaf node in a 

binary search tree.



Function insertNode(Cont.)

 The steps for inserting a node in a binary search 
tree are as follows:
 If *treePtr is NULL, create a new node. 

 Call malloc, assign the allocated memory to 
*treePtr, 

 Assign to (*treePtr)->data the integer to be 
stored, 

 Assign to (*treePtr)->leftPtr and 
(*treePtr)->rightPtr the value NULL

 Return control to the caller (either main or a 
previous call to insertNode). 



 If the value of *treePtr is not NULL and the value to 
be inserted is less than (*treePtr)->data,
 function insertNode is called with the address of (*treePtr)-

>leftPtr to insert the node in the left subtree of the node pointed to by 
treePtr. 

 If the value to be inserted is greater than 
(*treePtr)->data, 
 function insertNode is called with the address of (*treePtr)-

>rightPtr to insert the node in the right subtree of the node pointed to 
by treePtr.

 Otherwise, the recursive steps continue until a NULL
pointer is found, then Step 1 is executed to insert the 
new node.

Function insertNode(Cont.)



Tree Traversal Function

 The functions used to traverse the tree are recursive.

 Traversal functions are inOrder, preOrder and 

postOrder.

 Each receive a tree (i.e., the pointer to the root node of 

the tree) and traverse the tree.



Traversals: Function  inOrder

 The steps for an inOrder traversal are: left, root, right

 Traverse the left subtree inOrder.

 Process the value in the node.

 Traverse the right subtree inOrder.

 The value in a node is not processed until the values in its left 
subtree are processed.

 The inOrder traversal of the tree is:
 6 13 17 27 33 42 48



inOrder Function

 inOrder traversal is:   left, root, right



Traversals: Function  inOrder

 The inOrder traversal of a binary search tree 

prints the node values in ascending order.

 The process of creating a binary search tree actually 

sorts the data 

 this process is called the binary tree sort.



Traversals:  Function preOrder 

 The steps for a preOrder traversal are: root, left, right

 Process the value in the node.

 Traverse the left subtree preOrder. 

 Traverse the right subtree preOrder.

 The value in each node is processed as the node is visited.

 After the value in a given node is processed, the values in the 

left subtree are processed, then those in the right subtree are 

processed.

 The preOrder traversal of the tree is:
 27 13 6 17 42 33 48



preOrder Function

 preOrder traversal is:   root, left, right



Traversals: Function  postOrder

 The steps for a postOrder traversal are: left, right, root

 Traverse the left subtree postOrder.

 Traverse the right subtree postOrder.

 Process the value in the node. 

 The value in each node is not printed until the values of its 

children are printed.

 The postOrder traversal of the tree is:
 6 17 13 33 48 42 27



postOrder Function

 postOrder traversal is:  left, right, root



BST Applications: Duplicate Elimination

 The binary search tree facilitates duplicate elimination.

 An attempt to insert a duplicate value will be recognized

 a duplicate will follow the same “go left” or “go right” 

decisions on each comparison as the original value did.

 The duplicate will eventually be compared with a node 

in the tree containing the same value.

 The duplicate value may simply be discarded at this 

point.



Binary Tree Search

 Searching a binary tree for a value that matches a key 
value is fast.

 If the tree is tightly packed, each level contains about 
twice as many elements as the previous level.

 A binary search tree with n elements would have a 
maximum of log2n levels.

 a maximum of log2n comparisons would have to be made 
either to find a match or to determine that no match exists.

 Searching a (tightly packed) 1,000,000 element binary 

search tree requires no more than 20 comparisons 

 220 > 1,000,000.



Other Binary Tree Operations 

 The level order traversal of a binary tree visits the 

nodes of the tree row-by-row starting at the root node 

level.

 On each level of the tree, the nodes are visited from left to 

right.

 The level order traversal is not a recursive algorithm. 



Exercise

 Implement the level order binary tree traversal using 

a common data structure we have discussed in the 

class.

 Write the pseudo code of this algorithm.



Level Order Binary Tree Traversal

 Use the Queue data structure to control the output of 
the level order binary tree traversal.

 Algorithm

 Insert/enqueue the root node in the queue

 While there are nodes left in the queue,
 Get/dequeue the node in the queue

 Print the node’s value

 If the pointer to the left child of the node is not null

 Insert/enqueue the left child node in the queue

 If the pointer to the right child of the node is not null

 Insert/enqueue the right child node in the queue



Other Common Tree Data Strictures

 Binary search trees (BSTs)

 Support O(log2 N) operations

 Balanced trees 
 AVL trees, Splay trees

 B-trees for accessing secondary storage



Conclusions

 Accessing elements in a linear linked list can be 
prohibitive especially for large amounts of input.

 Trees are simple data structures for which the 
running time of most operations is O(log N) on 
average.

 For example, if N = 1 million:
 Searching an element in a linear linked list requires at 

most O(N) comparisons (i.e. 1 million comparisons)

 Searching an element in a binary search tree (a kind of 
tree) requires O(log2 N) comparisons ( 20 comparisons)


