
Build your own container runtime

Write a C/C++ program which will a spawn a command shell in a container-like isolated 
environment. The following are the specifications of this container shell: 

• The shell must run in separate network, mount, PID and UTS namespaces. You can achieve 
this in one of two ways: you can either create these namespaces beforehand and pass 
suitable arguments to your program to join the newly created namespaces, or you can create 
the namespaces directly from within your program. You can use some subset of the clone, 
setns, unshare system calls or their commandline wrappers. You can use the ip 
netns shell commands to create network namespaces. Supporting user and IPC 
namespaces is optional. 

• You must pass a root filesystem as an argument to your program, and your shell must begin 
execution in the top-level root directory of this root filesystem. That is, running ls in the 
shell must show the files in the root of your new root filesystem. 

• You must pass a new hostname as an argument to your program, and the shell must display 
this hostname upon running the hostname command. 

• Running the ps command in the shell of your container must display a view of processes in 
the new PID namespace. You can achieve this by mounting a new proc filesystem in the 
container. 

• You must be able to demonstrate network connectivity between your container's namespace 
and the default/parent namespace by running a client server application across namespaces. 
You can choose any client-server application of your choice. The server must be started from
the shell of your container, and a client running in the parent namespace should be able to 
successfully connect to this server and exchange information. The two namespaces must run 
with different IP addresses, and connectivity between these namespaces must be suitably 
configured via a veth device pair. You must also ensure that the server code/executable is 
part of your root filesystem, so that it can be executed from your container's shell. 

• You must configure limits on any one resource (e.g., CPU, memory) used by this container 
via Linux cgroups. You must also run a suitable program from the shell to demonstrate that 
the limits are being enforced. For example, if you set a limit on the maximum memory that 
can be used by your container, you must show that a memory-hungry application run from 
the shell cannot consume more memory beyond the configured limit. 

• You must be able to run multiple of such container shells, and show that they are isolated 
from one another. For example, the two separate containers must be able to start servers 
listening on the same port numbers (something you cannot do with regular Linux shell). 
Further, you must show that the processes in the two containers are not aware of each other 
using the output of the ps command. 

• Your program must not invoke an existing container runtime like LXC, but must accomplish
the above by directly invoking the cgroups and namespaces functionality of the Linux 
kernel. 

You must design a suitable demo for your shell, where you will run tests to demonstrate all of the 
above requirements, using commands of your choice. For example, you should start processes and 
demonstrate the ps command. You must create resource-hungry applications to demonstrate 
resource limits, and so on. You are responsible for writing code for all of these testcases as well. 


	Build your own container runtime

