
 Cloud Storage

Contents

1. Data storage in the age of cloud computing.

2. Evolution of storage systems.

3. Storage and data models.

4. Database management systems.

5. Unix file system (IFS).

6. Network file system (NFS).

7. General parallel file system (GPFS).

8. Google file system (GFS).

9. Apache Hadoop.

10. Locks; Chubby a locking service.

11. Online transaction processing.

Cloud Computing Third Edition - Chapter 7 2Dan C. Marinescu

Contents (Cont’d)

12. NoSQL databases.

13. Bigtable

14. Megastore.

15. Storage Reliability at scale; DynamoDB.

16. Disk locality versus data locality.

17. Database provenance.

Cloud Computing Third Edition - Chapter 7 3Dan C. Marinescu

Data storage in the age of cloud computing

 The volume of data generated by human activities is growing about
40% per year; 90% of the data in the world today has been gathered
in the last two years.

 The network-centric data storage model is particularly useful for
mobile devices with limited power reserves and local storage, now
able to save and to access large audio and video files stored on
computer clouds. Billions of Internet-connected mobile, as well as
stationary devices, access data stored on computer clouds.

 Big Data reflects the reality that many applications use data sets so
large that local computers, or even small to medium scale data
centers, do not have the capacity to store and process such data.

 The management of the large collection of storage systems poses
significant challenges and requires novel approaches to system
design. Effective data replication and storage management
strategies are critical to the computations performed on the cloud.

Cloud Computing Third Edition - Chapter 7 4Dan C. Marinescu

Major challenges

 The storage system design philosophy has shifted from performance-
at-any-cost to reliability-at-the-lowest-possible-cost.

 This design philosophy has important implications on software
complexity.

 Maintaining consistency among multiple copies of data records
increases the data management software complexity and could
negatively affect the storage system performance if data is frequently
updated.

 Sophisticated strategies to reduce the access time and to support
multimedia access are necessary to satisfy the timing requirements of
data streaming and content delivery.

 Data replication allows concurrent access to data from multiple
processors and decreases the chances of data loss.

Cloud Computing Third Edition - Chapter 7 5Dan C. Marinescu

Data storage on a cloud

 Storage and processing on the cloud are intimately tied to one another.
 Most cloud applications process very large amounts of data. Effective data

replication and storage management strategies are critical to the
computations performed on the cloud.

 Strategies to reduce the access time and to support real-time multimedia
access are necessary to satisfy the requirements of content delivery.

 Sensors feed a continuous stream of data to cloud applications.
 An ever increasing number of cloud-based services collect detailed

data about their services and information about the users of these
services. The service providers use the clouds to analyze the data.

 Humongous amounts of data - in 2013
 The Internet video will generate over 18 EB/month.
 Global mobile data traffic will reach 2 EB/month.

(1 EB = 1018 bytes, 1 PB = 1015 bytes, 1 TB = 1012 bytes, 1 GB = 1012 bytes)

Cloud Computing Third Edition - Chapter 7 6Dan C. Marinescu

Big data

 New concept reflects the fact that many applications use data
sets that cannot be stored and processed using local resources.

 Applications in genomics, structural biology, high energy physics,
astronomy, meteorology, and the study of the environment carry
out complex analysis of data sets often of the order of TBs
(terabytes). Examples:
 In 2010, the four main detectors at the Large Hadron Collider (LHC)

produced 13 PB of data.
 The Sloan Digital Sky Survey (SDSS) collects about 200 GB of data

per night.
 Three-dimensional phenomena:

 Increased volume of data.
 Requires increased processing speed to process more data and

produce more results.
 Involves a diversity of data sources and data types.

Cloud Computing Third Edition - Chapter 7 7Dan C. Marinescu

Evolution of storage technology

 The capacity to store information in units of 730-MB (1 CD-ROM)
 1986 - 2.6 EB <1, CD-ROM /person.
 1993 - 15.8 EB 4 CD-ROM/person.
 2000 - 54.5 EB 12 CD-ROM/person.
 2007 -295.0 EB 61 CD-ROM/person.

 Hard disk drives (HDD) - during the 1980-2003 period:
 Storage density of has increased by four orders of magnitude from about

0.01 Gb/in2 to about 100 Gb/in2

 Prices have fallen by five orders of magnitude to about 1 cent/MB.
 HDD densities are projected to climb to 1,800 Gb/in2 by 2016, up from 744

Gb/in2 in 2011.
 Dynamic Random Access Memory (DRAM) - during the period 1990-2003:

 The density increased from about 1 Gb/in2 in 1990 to 100 Gb/in2 .
 The cost has tumbled from about $80/MB to less than $1/MB.

Cloud Computing Third Edition - Chapter 7 8Dan C. Marinescu

Storage and data models
 A storage model describes the layout of a data structure in a

physical storage - a local disk, a removable media, or storage
accessible via the network.

 A data model captures the most important logical aspects of a
data structure in a database.

 Two abstract models of storage are used.
 Cell storage assumes that the storage consists of cells of the same

size and that each object fits exactly in one cell. This model reflects the
physical organization of several storage media; the primary memory of a
computer is organized as an array of memory cells and a secondary
storage device, e.g., a disk, is organized in sectors or blocks read and
written as a unit.

 Journal storage system that keeps track of the changes that will be
made in a journal (usually a circular log in a dedicated area of the file
system) before committing them to the main file system. In the event of a
system crash or power failure, such file systems are quicker to bring
back online and less likely to become corrupted.

Cloud Computing Third Edition - Chapter 7 9Dan C. Marinescu

Read/write coherence and before-or-after atomicity are two highly desirable
properties of any storage model and in particular of cell storage

Cloud Computing Third Edition - Chapter 7 10Dan C. Marinescu

M
A

M
A

time

Read/Write coherence: the result of a Read
of memory cell M should be the same as the

most recent Write to that cell

A A

Write item A to
memory cell M

Read item A from
memory cell M

Before-or-after atomicity: the result of every
Read or Write is the same as if that Read or
Write occurred either completely before or
completely after any other Read or Write.

Current
Read/Write

Previous
Read/Write

Next
 Read/Write

time

Data Base Management System (DBMS)

 Database a collection of logically-related records.
 Data Base Management System (DBMS) the software that

controls the access to the database.
 Query language a dedicated programming language used to

develop database applications.
 Most cloud application do not interact directly with the file systems,

but through a DBMS.
 Database models reflect the limitations of the hardware available

at the time and the requirements of the most popular applications of
each period.
 navigational model of the 1960s.
 relational model of the 1970s.
 object-oriented model of the 1980s.
 NoSQL model of the first decade of the 2000s.

Cloud Computing Third Edition - Chapter 7 11Dan C. Marinescu

Storage requirements of cloud applications
 Most cloud applications are data-intensive and test the limitations of

the existing infrastructure. Requirements:
 Rapid application development and short-time to the market.
 Low latency.
 Scalability.
 High availability.
 Consistent view of the data.

 These requirements cannot be satisfied simultaneously by existing
database models; e.g., relational databases are easy to use for
application development but do not scale well.

 The NoSQL model is useful when the structure of the data does not
require a relational model and the amount of data is very large.
 Does not support SQL as a query language.
 May not guarantee the ACID (Atomicity, Consistency, Isolation, Durability)

properties of traditional databases; it usually guarantees the eventual
consistency for transactions limited to a single data item.

Cloud Computing Third Edition - Chapter 7 12Dan C. Marinescu

Logical and physical organization of a file

 File a linear array of cells stored on a persistent storage device.
Viewed by an application as a collection of logical records; the file is
stored on a physical device as a set of physical records, or blocks,
of size dictated by the physical media.

 File pointer identifies a cell used as a starting point for a read or
write operation.

 The logical organization of a file reflects the data model, the view
of the data from the perspective of the application.

 The physical organization of a file reflects the storage model and
describes the manner the file is stored on a given storage media.

Cloud Computing Third Edition - Chapter 7 13Dan C. Marinescu

File systems

 File system collection of directories; each directory provides
information about a set of files.
 Traditional – Unix File System.
 Distributed file systems.

 Network File Systems (NFS) - very popular, have been used for some time,
but do not scale well and have reliability problems; an NFS server could be a
single point of failure.

 Storage Area Networks (SAN) - allow cloud servers to deal with non-
disruptive changes in the storage configuration. The storage in a SAN
can be pooled and then allocated based on the needs of the servers. A
SAN-based implementation of a file system can be expensive, as each
node must have a Fibre Channel adapter to connect to the network.

 Parallel File Systems (PFS) - scalable, capable of distributing files
across a large number of nodes, with a global naming space. Several I/O
nodes serve data to all computational nodes; it includes also a metadata
server which contains information about the data stored in the I/O nodes.
The interconnection network of a PFS could be a SAN.

Cloud Computing Third Edition - Chapter 7 14Dan C. Marinescu

Unix File System (UFS)

 The layered design provides flexibility.
 The layered design allows UFS to separate the concerns for the physical

file structure from the logical one.
 The vnode layer allowed UFS to treat uniformly local and remote file

access.
 The hierarchical design supports scalability reflected by the file

naming convention. It allows grouping of files directories, supports
multiple levels of directories, and collections of directories and files,
the so-called file systems.

 The metadata supports a systematic design philosophy of the file
system and device-independence.
 Metadata includes: file owner, access rights, creation time, time of the

last modification, file size, the structure of the file and the persistent
storage device cells where data is stored.

 The inodes contain information about individual files and directories.
The inodes are kept on persistent media together with the data.

Cloud Computing Third Edition - Chapter 7 15Dan C. Marinescu

 UFS layering

Cloud Computing Third Edition - Chapter 7 16Dan C. Marinescu

Logical file structure Logical
record

Physical file structure
Block Block

File layer

Inode layer

Path name
layer

Absolute path
name layer

Symbolic path
name layer

File name layer

Block layer

Network File System (NFS)

 Design objectives:
 Provide the same semantics as a local Unix File System (UFS) to ensure

compatibility with existing applications.
 Facilitate easy integration into existing UFS.
 Ensure that the system will be widely used; thus, support clients running on

different operating systems.
 Accept a modest performance degradation due to remote access over a network

with a bandwidth of several Mbps.

 NFS is based on the client-server paradigm. The client runs on the
local host while the server is at the site of the remote file system;
they interact by means of Remote Procedure Calls (RPC).

 A remote file is uniquely identified by a file handle (fh) rather than a
file descriptor. The file handle is a 32-byte internal name - a
combination of the file system identification, an inode number, and a
generation number.

Cloud Computing Third Edition - Chapter 7 17Dan C. Marinescu

The NFS client-server interaction. The vnode layer implements file operation in a
uniform manner, regardless of whether the file is local or remote.
An operation targeting a local file is directed to the local file system, while one for a
remote file involves NFS; an NSF client packages the relevant information about
the target and the NFS server passes it to the vnode layer on the remote host which,
in turn, directs it to the remote file system.

Cloud Computing Third Edition - Chapter 7 18Dan C. Marinescu

Local host

Application

File system API interface

Vnode layer

NFS client

NFS stub

Remote host

File system API interface

Communication network

NFS server

NFS stub

Vnode layer

Local file system Remote file system

 The API of the UNIX file system and the corresponding RPC issued
by an NFS client to the NFS server.
 fd file descriptor.
 fh for file handle.
 fname file name,
 dname directory name.
 dfh the directory were the file handle can be found.
 count the number of bytes to be transferred.
 buf the buffer to transfer the data to/from.
 device the device where the file system is located.

Cloud Computing Third Edition - Chapter 7 19Dan C. Marinescu

Comparison of distributed file systems

Cloud Computing Third Edition - Chapter 7 20Dan C. Marinescu

Cloud Computing Third Edition - Chapter 7 21Dan C. Marinescu

Application
API

NFS client
RPC

NFS server

OPEN
(fname,flags,mode)

CLOSE (fh)

 LOOKUP(dfh,fname)
 READ(fh, offset,count)

 CREATE(dfh,fname,mode)

READ(fd,buf,count) READ(fh, offset,count)

Lookup fname
in directory dfh and retun

fh (the file handle) and
file attributes or create a

new file
Remove fh from the open file table of
the process

Read data from file fh at
offset and length count

and return it.

WRITE(fd,buf,count)

SEEK(fd,buf,whence)

FSYNCH(fd)

CHMOD(fd, mode)

 WRITE(fh, offset,count,buf)
Write count bytes of data
to file fh at location given

by offset

Update the file pointer in the open file
table of the process

Write all cached data to persistent
storage

RENAME
(fromfname,tofname)

STAT(fname)

MKDIR(dname)
RMDIR(dname)

LINK(fname, linkname)

MOUNT
(fsname,device)

 GETATTR(fh)

 RENAME(dfh,fromfname,
 tofh,tofname)

 MKDIR(dfh, dname, attr)
 RMDIR(dfh, dname)

 LOOKUP(dfh, fname)
 READLINK(fh)
 LINK(dfh,fnam)

 SETATTR(fh, mode)

Write data

Check the pathname
and sender’s IP address
and return the fh of the
export root directory.

 LOOKUP(dfh, fname)

Create a link

Create/delete directory

Get metadata

Rename file

Update inode info

General Parallel File System (GPFS)

 Parallel I/O implies concurrent execution of multiple input/output
operations. Support for parallel I/O is essential for the performance of
many applications.

 Concurrency control is a critical issue for parallel file systems. Several
semantics for handling the shared access are possible. For example,
when the clients share the file pointer successive reads issued by
multiple clients advance the file pointer; another semantics is to allow
each client to have its own file pointer.

 GPFS.
 Developed at IBM in the early 2000s as a successor of the TigerShark

multimedia file system.
 Designed for optimal performance of large clusters; it can support a file

system of up to 4 PB consisting of up to 4,096 disks of 1 TB each.
 Maximum file size is (263 -1) bytes.
 A file consists of blocks of equal size, ranging from 16 KB to 1 MB,

stripped across several disks.

Cloud Computing Third Edition - Chapter 7 22Dan C. Marinescu

Cloud Computing Third Edition - Chapter 7 23Dan C. Marinescu

SAN

disk
disk

disk
disk

LAN1

LAN2

LAN3

LAN4

disk

disk

I/O servers

GPFS reliability

 To recover from system failures, GPFS records all metadata updates
in a write-ahead log file.

 Write-ahead updates are written to persistent storage only after the
log records have been written.

 The log files are maintained by each I/O node for each file system it
mounts; any I/O node can initiate recovery on behalf of a failed node.

 Data striping allows concurrent access and improves performance,
but can have unpleasant side-effects. When a single disk fails, a large
number of files are affected.

 The system uses RAID devices with the stripes equal to the block size
and dual-attached RAID controllers.

 To further improve the fault tolerance of the system, GPFS data files
as well as metadata are replicated on two different physical disks.

Cloud Computing Third Edition - Chapter 7 24Dan C. Marinescu

GPFS distributed locking
 In GPFS, consistency and synchronization are ensured by a

distributed locking mechanism. A central lock manager grants lock
tokens to local lock managers running in each I/O node. Lock
tokens are also used by the cache management system.

 Lock granularity has important implications on the performance.
GPFS uses a variety of techniques for different types of data.
 Byte-range tokens used for read and write operations to data files as

follows: the first node attempting to write to a file acquires a token
covering the entire file; this node is allowed to carry out all reads and
writes to the file without any need for permission until a second node
attempts to write to the same file; then, the range of the token given to
the first node is restricted.

 Data-shipping an alternative to byte-range locking, allows fine-grain
data sharing. In this mode the file blocks are controlled by the I/O nodes
in a round-robin manner. A node forwards a read or write operation to
the node controlling the target block, the only one allowed to access the
file.

Cloud Computing Third Edition - Chapter 7 25Dan C. Marinescu

Google File System (GFS)

 GFS developed in the late 1990s; uses thousands of storage
systems built from inexpensive commodity components to provide
petabytes of storage to a large user community with diverse needs.

 Design considerations.
 Scalability and reliability are critical features of the system; they must be

considered from the beginning, rather than at some stage of the design.
 The vast majority of files range in size from a few GB to hundreds of TB.
 The most common operation is to append to an existing file; random write

operations to a file are extremely infrequent.
 Sequential read operations are the norm.
 The users process the data in bulk and are less concerned with the

response time.
 The consistency model should be relaxed to simplify the system

implementation but without placing an additional burden on the application
developers.

Cloud Computing Third Edition - Chapter 7 26Dan C. Marinescu

GFS – design decisions
 Segment a file in large chunks.
 Implement an atomic file append operation allowing multiple

applications operating concurrently to append to the same file.
 Build the cluster around a high-bandwidth rather than low-latency

interconnection network. Separate the flow of control from the data
flow. Pipeline data transfer over TCP connections. Exploit network
topology by sending data to the closest node in the network.

 Eliminate caching at the client site. Caching increases the overhead
for maintaining consistency among cashed copies.

 Ensure consistency by channeling critical file operations through a
master, a component of the cluster which controls the entire system.

 Minimize the involvement of the master in file access operations to
avoid hot-spot contention and to ensure scalability.

 Support efficient checkpointing and fast recovery mechanisms.
 Support an efficient garbage collection mechanism.

Cloud Computing Third Edition - Chapter 7 27Dan C. Marinescu

GFS chunks
 GFS files are collections of fixed-size segments called chunks.
 The chunk size is 64 MB; this choice is motivated by the desire to

optimize the performance for large files and to reduce the amount
of metadata maintained by the system.

 A large chunk size increases the likelihood that multiple operations
will be directed to the same chunk thus, it reduces the number of
requests to locate the chunk and, at the same time, it allows the
application to maintain a persistent network connection with the
server where the chunk is located.

 A chunk consists of 64 KB blocks and each block has a 32 bit
checksum.

 Chunks are stored on Linux files systems and are replicated on
multiple sites; a user may change the number of the replicas, from
the standard value of three, to any desired value.

 At the time of file creation each chunk is assigned a unique chunk
handle.

Cloud Computing Third Edition - Chapter 7 28Dan C. Marinescu

 The architecture of a GFS cluster; the master maintains state information
about all system components; it controls a number of chunk servers. A
chunk server runs under Linux; it uses metadata provided by the master to
communicate directly with the application. The data and the control paths
are shown separately, data paths with thick lines and the control paths with
thin lines. Arrows show the flow of control between the application, the
master and the chunk servers.

Cloud Computing Third Edition - Chapter 7 29Dan C. Marinescu

Application

Master

Meta-information

Communication network

Linux file system

Chunk server Chunk serverChunk server

Linux file system Linux file system

Chunk data

Chunk handle
& data count

File name & chunk index

Chunk handle & chunk location

Instructions

State
information

Apache Hadoop

 Apache Hadoop an open source, Java-based software,
supports distributed applications handling extremely large volumes
of data.

 Hadoop is used by many organization from industry, government,
and research; major IT companies e.g., Apple, IBM, HP, Microsoft,
Yahoo, and Amazon, media companies e.g., New York Times and
Fox, social networks including, Twitter, Facebook, and Linkedln,
and government agencies such as Federal Reserve.

 A Hadoop system has two components, a MapReduce engine and
a database. The database could be the Hadoop File System
(HDFS), Amazon’s S3, or CloudStore, an implementation of GFS.

 HDFS is a distributed file system written in Java; it is portable, but
it cannot be directly mounted on an existing operating system.
HDFS is not fully POSIX compliant, but it is highly performant.

Cloud Computing Third Edition - Chapter 7 30Dan C. Marinescu

A Hadoop cluster using HDFS; the cluster includes a master and four slave nodes.
Each node runs a MapReduce engine and a database engine. The job tracker of
the master's engine communicates with task trackers on all the nodes and with the
name node of HDFS. The name node of the HDFS shares information about the
data placement with the job tracker to minimize communication between the nodes
where data is located and the ones where it is needed.

Cloud Computing Third Edition - Chapter 7 31Dan C. Marinescu

Master node

MapReduce engine

Task tracker

Job tracker

HDFS

Name node

Data node

Slave node

HDFS

Data node

MapReduce engine

Task tracker

Slave node

HDFS

Data node

MapReduce engine

Task tracker

Slave node

HDFS

Data node

MapReduce engine

Task tracker

Slave node

HDFS

Data node

MapReduce engine

Task tracker

Client

Locks; Chubby - a locking service
 Locks support the implementation of reliable storage for loosely-coupled

distributed systems; they enable controlled access to shared storage
and ensure atomicity of read and write operations.

 Distributed consensus problems, such as the election of a master from
a group of data servers; e.g., the GFS master maintains state
information about all systems components.

 Two approaches possible:
 delegate to the clients the implementation of the consensus algorithm and

provide a library of functions needed for this task.
 create a locking service which implements a version of the asynchronous

Paxos algorithm and provide a library to be linked with an application client.
 Chubby -Based on the Paxos algorithm which guarantees safety without

any timing assumptions, a necessary condition in a large-scale system
when communication delays are unpredictable; the algorithm must use
clocks to ensure liveliness and to overcome the impossibility of reaching
consensus with a single faulty process.

Cloud Computing Third Edition - Chapter 7 32Dan C. Marinescu

Paxos algorithm

 Used to reach consensus on sets of values, e.g., the sequence of
entries in a replicated log.

 The phases of the algorithm.
 Elect a replica to be the master/coordinator. When a master fails, several

replicas may decide to assume the role of a master; to ensure that the
result of the election is unique each replica generates a sequence number
larger than any sequence number it has seen, in the range (1,r) where r is
the number of replicas, and broadcasts it in a propose message. The
replicas which have not seen a higher sequence number broadcast a
promise reply and declare that they will reject proposals from other
candidate masters; if the number of respondents represents a majority of
replicas, the one who sent the propose message is elected as the master.

 The master broadcasts to all replicas an accept message including the
value it has selected and waits for replies, either acknowledge or reject.

 Consensus is reached when the majority of the replicas send the
acknowledge message; then the master broadcasts the commit message.

Cloud Computing Third Edition - Chapter 7 33Dan C. Marinescu

Locks

 Advisory locks based on the assumption that all processes play by
the rules; do not have any effect on processes that circumvent the
locking mechanisms and access the shared objects directly.

 Mandatory locks block access to the locked objects to all processes
that do not hold the locks, regardless if they use locking primitives or
not.

 Fine-grained locks locks that can be held for only a very short time.
Allow more application threads to access shared data in any time
interval, but generate a larger workload for the lock server. When the
lock server fails for a period of time, a larger number of applications
are affected.

 Coarse-grained locks locks held for a longer time.

Cloud Computing Third Edition - Chapter 7 34Dan C. Marinescu

 A Chubb cell consisting of 5 replicas, one of them elected as a master; n
clients use RPCs to communicate with the master.

Cloud Computing Third Edition - Chapter 7 35Dan C. Marinescu

C1

C3

C2

C4

Cn-1

Cn

Chubby cell

Replica

Replica

Replica

Replica

Master

.

.

.

Chubby operation

 Clients use RPCs to request services from the master.
 When it receives a write request, the master propagates the request to all

replicas and waits for a reply from a majority of replicas before responding.
 When it receives a read request, the master responds without consulting

the replicas.
 The client interface of the system is similar to, yet simpler than, the

one supported by the Unix file system; in addition, it includes
notification for events related to file or system status.

 A client can subscribe to events such as: file contents modification,
change or addition of a child node, master failure, lock acquired,
conflicting lock requests, invalid file handle.

 Each file or directory can act as a lock. To write to a file the client must
be the only one holding the file handle, while multiple clients may hold
the file handle to read from the file.

Cloud Computing Third Edition - Chapter 7 36Dan C. Marinescu

Chubby replica architecture; the Chubby component implements the communication
protocol with the clients. The system includes a component to transfer files to a fault-
tolerant database and a fault-tolerant log component to write log entries. The fault-
tolerant log uses the Paxos protocol to achieve consensus. Each replica has its own
local file system; replicas communicate with one another using a dedicated
interconnect and communicate with clients through a client network.

Cloud Computing Third Edition - Chapter 7 37Dan C. Marinescu

disk

Chubby replica

Chubby

Fault-tolerant
database

Fault-
tolerant log

Log

Chubby replica

Chubby

Fault-tolerant
database

Fault-tolerant
log

Replica interconnect

Chubby client network

disk

Log

Transaction processing

 Online Transaction Processing (OLTP) widely used by many
cloud applications.

 Major requirements:
 Short response time.
 Scalability.

 Vertical scaling data and workload are distributed to systems that
share resources, e.g., cores/processors, disks, and possibly RAM

 Horizontal scaling the systems do not share either primary or
secondary storage.

 The search for alternate models to store the data on a cloud is
motivated by the needs of OLTP applications:
 decrease the latency by caching frequently used data in memory.
 allow multiple transactions to occur at the same time and decrease the

response time by distributing the data on a large number of servers.

Cloud Computing Third Edition - Chapter 7 38Dan C. Marinescu

Sources of OLTP overhead
 Four sources with equal contribution:

 Logging - expensive because traditional databases require transaction
durability thus, every write to the database can only be completed after
the log has been updated.

 Locking - to guarantee atomicity, transactions lock every record and
this requires access to a lock table.

 Latching – many operations require multi-threading and the access to
shared data structures, such as lock tables, demands short-term latches
for coordination. A latch is a counter that triggers an event when it
reaches zero; for example a master thread initiates a counter with the
number of worker threads and waits to be notified when all of them have
finished.

 Buffer management.
 The breakdown of the instruction count for these operations in

existing DBMS is: 34.6% for buffer management, 14.2% for latching,
16.2 % for locking, 11.9% for logging, and 16.2 % for manual
optimization.

Cloud Computing Third Edition - Chapter 7 39Dan C. Marinescu

 NoSQL databases
 The name NoSQL is misleading. Stonebreaker notes that “blinding

performance depends on removing overhead. Such overhead has
nothing to do with SQL, it revolves around traditional implementations
of ACID transactions, multi-threading, and disk management.”

 The soft-state approach allows data to be inconsistent and transfers
the task of implementing only the subset of the ACID properties
required by a specific application to the application developer.

 NoSQL systems ensure that data will be eventually consistent at some
future point in time, instead of enforcing consistency at the time when
a transaction is committed.

 Attributes:
 Scale well.
 Do not exhibit a single point of failure.
 Have built-in support for consensus-based decisions.
 Support partitioning and replication as basic primitives.

Cloud Computing Third Edition - Chapter 7 40Dan C. Marinescu

Bigtable
 Distributed storage system developed by Google to

 store massive amounts of data.
 scale up to thousands of storage servers.

 The system uses
 Google File System to store user data and system information.
 Chubby distributed lock service to guarantee atomic read and write

operations; the directories and the files in the namespace of Chubby are
used as locks.

 Simple and flexible data model a multidimensional array of cells.
 A row key an arbitrary string of up to 64 KB and a row range is

partitioned into tablets serving as units for load balancing. The
timestamps used to index different versions of the data in a cell are 64-
bit integers; their interpretation can be defined by the application, while
the default is the time of an event in microseconds.

 A column key consists of a string, a set of printable characters, and
an arbitrary string as qualifier.

Cloud Computing Third Edition - Chapter 7 41Dan C. Marinescu

The organization of an Email application as a sparse, distributed, multidimensional
map. The slice of Bigtable shown consists of a row with the key UserId and three
family columns; the Contents key identifies the cell holding the contents of Emails
received, the one with key Subject identifies the subject of Emails, and the one with
the key Reply identifies the cell holding the replies; the version of records in each
cell are ordered according to timestamps. Row keys are ordered lexicographically; a
column key is obtained by concatenating family and the qualifier fields

Cloud Computing Third Edition - Chapter 7 42Dan C. Marinescu

Row keys
(lexicographic

order)

 A pair of (row, column) keys uniquely identify a cell consisting of
multiple versions of the same data ordered by their timestamps.

Column keys
(family:qualifier)

UserId

C
on

te
nt

s

S
ub

je
ct

R
e

p
ly

Bigtable performance – the number of operations

Cloud Computing Third Edition - Chapter 7 43Dan C. Marinescu

Megastore

 Scalable storage for online services. Widely used internally at Google,
 it handles some 23 billion transactions daily, 3 billion write and 20
billion read transactions.

 The system, distributed over several data centers, has a very large
capacity, 1 PB in 2011, and it is highly available.

 Each partition is replicated in data centers in different geographic
areas. The system supports full ACID semantics within each partition
and provides limited consistency guarantees across partitions.

 The Paxos consensus algorithm is used to replicate primary user
data, metadata, and system configuration information across data
centers and for locking. The version of the Paxos algorithm does not
require a single master, instead any node can initiate read and write
operations to a write-ahead log replicated to a group of symmetric
peers.

 The system makes extensive use of Bigtable.

Cloud Computing Third Edition - Chapter 7 44Dan C. Marinescu

Megastore’s data model

 Reflects a middle ground between traditional and NoSQL databases.
 The data model is declared in a schema consisting of a set of tables,

composed of entries.
 An entry a collection of named and typed properties; the unique

primary key of an entity in a table is created as a composition of entry
properties. An entity group consists of the primary entity and all
entities that reference it.

 A table can be a root or a child table.

Cloud Computing Third Edition - Chapter 7 45Dan C. Marinescu

Megastore organization. The data is partitioned into entity groups; full ACID
semantics within each partition and limited consistency guarantees across
partitions are supported. A partition is replicated across data centers in
different geographic areas.

Cloud Computing Third Edition - Chapter 7 46Dan C. Marinescu

disk

disk

disk

disk

disk

disk

disk

disk

disk

disk

disk

disk

disk

disk

disk

disk

disk

disk

disk

disk

Datacenters

Strict consistency
(ACID semantics)
enforced within an
entity group.

Loose consistency
among entity
groups.

Entity groups

Storage reliability at scale; DynamoDB

 DynamoDB is a NoSQL database service for latency-sensitive
applications that need consistent access at any scale.
 Is a fully-managed database service designed to provide an always-on

experience.
 Supports both document and key-value store models and has been

used for mobile, web, gaming, IoT, advertising, real-time analytics, and
other applications.

 Stores data on SSDs to support latency-sensitive applications; typical
requests take milliseconds to complete.

 Allows developers to specify the throughput capacity required for
specific tables within their database using the provisioned throughput
feature to deliver predictable performance at any scale

Cloud Computing Third Edition - Chapter 7 47Dan C. Marinescu

DynamoDB design concerns and solutions

 High availability is the primary concern. Updates should not be rejected
even in the wake of network partitions or server failures.

 Deliver predictive performance in addition to reliability and scalability.
 The services supported have stringent latency requirements and this

precludes supporting ACID properties.
 Strong consistency and high data availability cannot be achieved

simultaneously.
 Availability can be increased by optimistic replication, allowing

changes to propagate to replicas in the background, while
disconnected work is tolerated.

 In traditional data stores writes may be rejected if the data store cannot
reach all, or a majority of the replicas at a given time.

 Rather than implementing conflict resolution during writes and keeping
the read complexity simple, Dynamo increases the complexity of
conflict resolution of read operations.

Cloud Computing Third Edition - Chapter 7 48Dan C. Marinescu

Techniques to achieve the design objectives

 Incremental scalability ensured by consistent hashing.
 High write availability based on the use of vector clocks with

reconciliation.
 Handling temporary failures using sloppy quorum and hinted

handoff. This provides high availability and durability guarantees
when some of the replicas are not available

 Permanent failure recovery based on anti-entropy and Merkle
trees. The technique synchronizes divergent replicas in background.

 Gossip-based membership protocol and failure detection for
membership and failure detection. The advantage of this technique
is that it preserves symmetry and avoids having a centralized
registry for storing membership and node liveness information.

Cloud Computing Third Edition - Chapter 7 49Dan C. Marinescu

Server organization

The servers of the DynamoDB
service are organized as a ring.
Ring nodes B, C, and D store
keys in range (A,B), including the
key k.

A data item identified by a key is
assigned to a storage server by
hashing the data item key to
yield its position on the ring, and
then walking the ring clockwise
to find the first node with a
position larger than the position
of the item.

A storage server is responsible
for the ring region between itself
and its predecessor in the ring.

Cloud Computing Third Edition - Chapter 7 50Dan C. Marinescu

B

A

C

DE

G

F

Key k

Virtual nodes

 Instead of mapping a storage server to a single point in the ring the
system uses ``virtual nodes'' and assigns it to multiple points in the
ring.

 A physical server is mapped to multiple nodes of the ring. This form
of virtualization supports:
 Load balancing. When a storage server is unavailable its load is

dispersed among available servers. When the server comes back again,
it is added to the system and accepts a load roughly equivalent to the
load of other servers.

 System heterogeneity. The number of virtual nodes a physical server is
mapped to depends on its capacity.

Cloud Computing Third Edition - Chapter 7 51Dan C. Marinescu

Eventual consistency

 This strategy allows updates to be propagated to all replicas
asynchronously. A versioning system allows multiple versions of a
data object to be present in the data store at the same time. The
result of each modification is a new and immutable version of data.
New versions often subsume the older ones and the system can
use syntactic reconciliation to determine the authoritative version.

 The system uses vector clocks, lists of (node, counter) pairs, to
capture causality of each version of a data object. When a client
updates an object, it must specify the version it is updating by
passing the context it obtained from an earlier read operation, which
contains the vector clock information.

Cloud Computing Third Edition - Chapter 7 52Dan C. Marinescu

Versioning mechanism for a sequence of events

 Data is written by server Sa and the object Data1 with the associated
clock [Sa,1] is created.

 The same server Sawrites again and the object Data2 with the
associated clock [Sa,2] is created. Data2 is a descendent of Data1
and over-writes it. There may be replicas of Data1 at servers that
have not yet seen Data2.

 The same client updates the object and server Sb handles the
request; a new object, Data3, and its associated clock [(S_{a}, 2),
(S_{b}, 1)] are created.

 A different client reads Data2 and then tries to update it, and this time
server Sc handles her request. A new object, Data4, a descendent of
Data2, with version clock is [(S_{a}, 2), (S_{c}, 1)] is created.

 Upon receiving Data4 and its clock, a server aware of Data1 or
Data2 could determine, that both are overwritten by the new data
and can be garbage collected.

Cloud Computing Third Edition - Chapter 7 53Dan C. Marinescu

The time evolution of an object using vector clocks

The evolution based on the sequence of events in the previous slide.

Cloud Computing Third Edition - Chapter 7 54Dan C. Marinescu

Data1 ([Sa,1])

Data2 ([Sa,2])

Data3 ([Sa,2], [Sb,1]) Data4 ([Sa,2], [Sc,1])

Data5 ([Sa,3], [Sb,1], [Sc,1])

Writen by server Sa

Writen by server Sa

Writen by server Sb Writen by server Sc

Reconciled and
writen by server Sa

Disk locality versus data locality

 Locality is critical for the performance of computing systems.
 A sequence of references is said to have spatial locality if the items

referenced within a short time interval are close in space, e.g., they are
at nearby sectors on a disk.

 A sequence exhibits temporal locality if accesses to the same item are
clustered in time.

 Disk locality improves the performance of cloud applications:
 Disk bandwidth is larger than the network bandwidth; the off-rack

communication bandwidth is oversubscribed and affects the off-rack
disk access.

 The better performance of I/O-intensive applications when data stored
locally is due to he lower latency and the higher bandwidth of a local
disk versus the latency and the bandwidth of a remote disk.

Cloud Computing Third Edition - Chapter 7 55Dan C. Marinescu

Intriguing question

 Should we focus on data locality instead of on disk locality?
 We should look at the local memory as a data cache and make

sure that data is stored in the local memory rather than the local
disk of the processor where the task is scheduled to run.

 Data transfer through the network may still be necessary, but why
store it on the disk and then load it in memory

Cloud Computing Third Edition - Chapter 7 56Dan C. Marinescu

Arguments in favor of data locality

 Networking technology improves at a faster pace than HDD technology.
 The bandwidth available to applications will increase as data centers

adopt bisection topologies for their interconnects.
 Latency of a read access to a local disk is only slightly lower than

latency of a read to a disk in the same rack.
 Solid state disks are unlikely to replace hard disk drives any time soon

due to the volume of data stored on computer clouds. To be competitive
with HDDs the cost-per-byte of SSD should be reduced by up to three
orders of magnitude.

 Accessing data in local memory is two orders of magnitude faster than
reading from a local disk.

 There is at least a two orders of magnitude discrepancy between the
capacity of disks and memory. Shall use processor memory as a cache
for the much larger volume of data stored on the disks.

Cloud Computing Third Edition - Chapter 7 57Dan C. Marinescu

Database provenance

 Data provenance or lineage describes the origins and the history of
data and adds value to data by explaining how it was obtained.

 The lineage of a tuple T in the result of a query is the set of items
contributing to produce T.

 Data provenance could show inputs that explain why an output record
was produced, describing in detail how the record was produced,
and/or explaining where output data comes from.

 The witness of a database record is the subset of database records
ensuring that the record is the output of a query.

 Why-provenance includes information about the witnesses to a query.
 The number of witnesses can be exponentially large. To limit this

number the witness base of tuple T in query Q on database D is
defined as the particular set of witnesses which can be calculated
efficiently from Q and D.

Cloud Computing Third Edition - Chapter 7 58Dan C. Marinescu

	Slide 1
	Contents
	Contents (Cont’d)
	Data storage in the age of cloud computing
	Major challenges
	Data storage on a cloud
	Big data
	Evolution of storage technology
	Storage and data models
	Slide 10
	Data Base Management System (DBMS)
	Storage requirements of cloud applications
	Logical and physical organization of a file
	File systems
	Unix File System (UFS)
	UFS layering
	Network File System (NFS)
	Slide 18
	Slide 19
	Comparison of distributed file systems
	Slide 21
	General Parallel File System (GPFS)
	Slide 23
	GPFS reliability
	GPFS distributed locking
	Google File System (GFS)
	GFS – design decisions
	GFS chunks
	Slide 29
	Apache Hadoop
	Slide 31
	Locks; Chubby - a locking service
	Paxos algorithm
	Locks
	Slide 35
	Chubby operation
	Slide 37
	Transaction processing
	Sources of OLTP overhead
	NoSQL databases
	Bigtable
	Slide 42
	Bigtable performance – the number of operations
	Megastore
	Megastore’s data model
	Slide 46
	Storage reliability at scale; DynamoDB
	DynamoDB design concerns and solutions
	Techniques to achieve the design objectives
	Server organization
	Virtual nodes
	Eventual consistency
	Versioning mechanism for a sequence of events
	The time evolution of an object using vector clocks
	Disk locality versus data locality
	Intriguing question
	Arguments in favor of data locality
	Database provenance

