
Spring 2023
Cloud and Edge Computing

Instructor : Dr. Bibhas Ghoshal   

Lecture 4 : Virtualization Techniques

Dr. Bibhas Ghoshal

Assistant Professor 

Department of Information Technology 

Indian Institute of Information Technology Allahabad

Some Slides Used in this Lecture have been adapted from slides of  Professor 
Mythilli Vutukuru, Dept. Of CSE, IIT Bombay delivered for the course 
Virtualization and Cloud Computing 



Spring 2023
Cloud and Edge Computing

Instructor : Dr. Bibhas Ghoshal   

Hardware Assisted Virtualization

• Original x86 CPUs did not support virtualization

•  Modern technique, after hardware support for virtualization introduced 
in CPUs - Intel VT-X or AMD-Vsupport is widely available in modern systems

•  Special CPU mode of operation called VMX mode for running VMs
• Many hypervisors use this H/W feature - QEMU/KVM in Linux

Works with binary translation if no hardware support

Sets up guest VM memory as part of userspace process

When invoked, KVM switches to VMX mode to run guest

CPU switches between VMX and non-VMX root modes

Slide Author : Mythilli Vutukuru 



Spring 2023
Cloud and Edge Computing

Instructor : Dr. Bibhas Ghoshal   

Hardware Assisted Virtualization

• Install QEMU/KVM on Linux  =>  libvirtis is  installed

• A set of tools manage hypervisors, including QEMU/KVM
• A daemon runs on the system and communicates with hypervisors
• Exposes an API using which hypervisors can be managed, VM 
created etc.
• Command linetool (virsh) and GUI (virt-manager) use this API to 
manage VMs



Spring 2023
Cloud and Edge Computing

Instructor : Dr. Bibhas Ghoshal   

QEMU Architecture

•QEMU is userspace process
• KVM exposes a dummy device
• QEMU talks to KVM via open/ioctlsyscalls

• Allocates memory via mmapfor guest 

  VM physical memory

• Creates one thread for each virtual CPU 

  (VCPU) in guest

• Multiple file descriptors to /dev/kvm

(one for QEMU, one for VM, one for VCPU and so on)
•ioctlon fdsto talk to KVM

•Host OS sees QEMU as a regular multi-threaded process



Spring 2023
Cloud and Edge Computing

Instructor : Dr. Bibhas Ghoshal   

QEMU Operation

This ioctlsystem call blocks this thread, 
KVM switches to VMX mode, 
runs guest VM

Returns to QEMU on host when VM 
exits from VMX mode.

QEMU handles exit and returns to guest VM



Spring 2023
Cloud and Edge Computing

Instructor : Dr. Bibhas Ghoshal   

QEMU Operation



Spring 2023
Cloud and Edge Computing

Instructor : Dr. Bibhas Ghoshal   

VMX Mode

• Special CPU instructions to enter and exit VMX mode
    • VMLAUNCH, VMRESUME invoked by KVM to enter VMX mode
    • VMEXIT invoked by guest OS to exit VMX mode

• On VMX entry/exit instructions, CPU switches context 
between host OS to guest OS
   • Page tables (address space), CPU register values etc. switched 
   • Hardware manages the mode switch

• Where is CPU context stored during mode switch?
   • Cannot be stored in host OS or guest OS data structures alone    
      (why?)
  •  VMCS (VM control structure), also called VMCB (VM control block)



Spring 2023
Cloud and Edge Computing

Instructor : Dr. Bibhas Ghoshal   

VMCS

• What is VMCS?
        •  Common memory area accessible in both modes
        •  One VMCS per VM (KVM tells CPU which VMCS to use)

•  What is stored in VMCS?
        • Host CPU context:Stored when launching VM, restored on VM exit
        • Guest CPU context:Stored on VM exit, restored when VM is run
        • Guest entry/execution/exit control area:KVM can configure guest    
           Memory and CPU context, which instructions and events should cause VM to   
           exit
        •  Exit information:Exit reason and any other exit-related information

•  VMCS information exchanged with QEMU via kvm_runstructure
        •   VMCS only accessible to KVM in kernel mode, not to QEMU userspace



Spring 2023
Cloud and Edge Computing

Instructor : Dr. Bibhas Ghoshal   

VMX Mode of Execution

• How is guest OS execution in VMX mode different?
• Restrictions on guest OS execution, configurable exits to KVM

        • Guest OS exits to KVM on certain instructions (e.g., I/O device         

           access)

• No hardware access to guest, emulated by KVM

       •  Guest OS usually exits on interrupts (interrupts handled by KVM, 
assigned to the appropriate host or guest OS)
       •  KVM can inject virtual interrupts to guest OS during VMX mode entry

• All of the above controlled by KVM via VMCS

• Mimics the trap-and-emulate architecture with hardware support
       •   Guest runs in a (special) ring 0, but trap-and-emulate achieved



Spring 2023
Cloud and Edge Computing

Instructor : Dr. Bibhas Ghoshal   

Host View 

• Host sees QEMU as regular multithreaded process

     • Process that has memory-mapped memory, talks to KVM device via ioctl calls
     • Multiple QEMU VCPU threads can be scheduled in parallel on multiple cores

• When KVM launches a VM, host OS context is stored in VMCS
     • Host OS execution is suspended (all host processes stop)
     • CPU loads guest OS context and guest OS starts running

• When guest OS exits, host OS context is restored from VMCS
     • Host OS resumes in KVM, where it stopped execution
     • KVM can return to QEMU, or host can switch to another process
     • Host OS is not aware of guest OS execution



Spring 2023
Cloud and Edge Computing

Instructor : Dr. Bibhas Ghoshal   

Full Virtualization

• Dynamic(on a need basis) binary(not source) translation of OS 
   instructions
       • Problematic OS instructions translated before execution

•  VMWare workstation first to solve the problem of 
virtualization existing   
   operating systems on x86 (basis for this lecture)
     • Type 2 hypervisor based on trap-and-emulate approach

     •  Binary translation is higher overhead than hardware-assisted    

        virtualization

     •  Used when hardware support not available



Spring 2023
Cloud and Edge Computing

Instructor : Dr. Bibhas Ghoshal   

Full Virtualization VMM Architecture



Spring 2023
Cloud and Edge Computing

Instructor : Dr. Bibhas Ghoshal   

Host and VMM contexts

• Each context has separate 
page tablesCPU registers etc. 

• VMM context : 

VMM occupies top 4MB

of address space 

• Memory page containing 

code/data of world switch 

mapped in both contexts

• Host/VMM context saved/restored in this 

special “cross” page by VMM



Spring 2023
Cloud and Edge Computing

Instructor : Dr. Bibhas Ghoshal   

Full Virtualization versus QEMU/KVM 

• Where is context saved?
• Common cross page mapped into both host and guest address spaces
• KVM: Common memory (VMCS) accessible by CPU in both contexts via    
special instructions 

• Privilege level of guest OS?
• Guest OS runs in ring 1 (lower privilege). Instructions that do not run correctly at 
lower privilege level are suitably translated to trap to VMM
• KVM: Guest OS runs in VMX ring 0. Some privileged instructions trigger exit to 
KVM

• How to trap to VMM?
• VMM is located in top 4MB of guest address space , guest OS traps to VMM for 
privileged ops. World switch to host if VMM cannot handle trap in guest context
• KVM : VMM is not in guest context, guest traps to VMM in host via VM exit



Spring 2023
Cloud and Edge Computing

Instructor : Dr. Bibhas Ghoshal   

Binary Translation

• Guest OS binary is translated 
instruction-by-instruction and stored 
in translation cache (TC)
•Part of VMM memory
•Most code stays same, unmodified
•OS code modified to work correctly in ring 1
•Sensitive but unprivileged instructions modified to trap

Guest OS code executes from TC in ring 1

•Privileged OS code traps to VMM
•E.g., I/O, set IDT, set CR3, other privileged ops
•Emulated in VMM context or by switching to host
•VMM sets sensitive data structures like IDT etc. (maintains shadow copies)



Spring 2023
Cloud and Edge Computing

Instructor : Dr. Bibhas Ghoshal   

Dynamic Binary Translation

• VMM translator logic (ring 0) 
translates guest code one basic block 
at a time to produce a compiled code 
fragment (CCF)
•Basic block = sequence of instructions 

until a jump/return

•Once CCF is created, move to ring 1 to 

run translated guest code

•Once CCF ends, “call out” to VMM logic, 

compute next instruction to jump to, translate, 

run CCF, and so on

•If next CCF present in TC already, then directly

 jump to it without invoking VMM translator logic
•Optimization called chaining



Spring 2023
Cloud and Edge Computing

Instructor : Dr. Bibhas Ghoshal   

Use of Segmentation for Protection

• Paging protects user code from kernel 
code via bit in page table entry
• Segments are”flat”
• Separate flat segments for user and kernel 
modes

Segmentation is used to protect VMM 

from guest

• Flat segments truncated to exclude VMM
• CS of guest OS (ring 1) points to VMM
• VMM (ring 0) segments point to top 4MB



Spring 2023
Cloud and Edge Computing

Instructor : Dr. Bibhas Ghoshal   

Dynamic Binary Translation

• VMM translator logic (ring 0) 
translates guest code one basic block 
at a time to produce a compiled code 
fragment (CCF)
•Basic block = sequence of instructions 

until a jump/return

•Once CCF is created, move to ring 1 to 

run translated guest code

•Once CCF ends, “call out” to VMM logic, 

compute next instruction to jump to, translate, 

run CCF, and so on

•If next CCF present in TC already, then directly

 jump to it without invoking VMM translator logic
•Optimization called chaining



Spring 2023
Cloud and Edge Computing

Instructor : Dr. Bibhas Ghoshal   

Dynamic Binary Translation

• VMM translator logic (ring 0) 
translates guest code one basic block 
at a time to produce a compiled code 
fragment (CCF)
•Basic block = sequence of instructions 

until a jump/return

•Once CCF is created, move to ring 1 to 

run translated guest code

•Once CCF ends, “call out” to VMM logic, 

compute next instruction to jump to, translate, 

run CCF, and so on

•If next CCF present in TC already, then directly

 jump to it without invoking VMM translator logic
•Optimization called chaining



Spring 2023
Cloud and Edge Computing

Instructor : Dr. Bibhas Ghoshal   

Para Virtualization

● Guest operating system is modified to use only instructions that 
can be virtualized. 

● Reasons for para virtualization :

       Some aspects of the hardware cannot be virtualized

       Improved performance

       Present a simpler interface

● Examples: Xen, Denaly



Spring 2023
Cloud and Edge Computing

Instructor : Dr. Bibhas Ghoshal   

Xen and Para Virtualization 

• Para virtualization: modify guest OS to be amenable to 
virtualization

• XenoLinux is a modified Linux OS that runs on Xen hypervisor
• Application interface need not change

• Benefits: better performance than binary translation

• Disadvantages: requires source code changes to OS,   
porting effort



Spring 2023
Cloud and Edge Computing

Instructor : Dr. Bibhas Ghoshal   

Xen  - A VMM Based on Para Virtualization 

X86 hardware

Domain0 control 
interface

Virtual x86 
CPU

Virtual physical 
memory

Virtual network
Virtual block 

devices

Xen

Management 
OS

Xen-aware 
device drivers

Application Application Application

Guest OS

Xen-aware 
device drivers

Guest OS

Xen-aware 
device drivers

Xen-aware 
device drivers

Guest OS

Xen-aware 
device drivers

Figure Source : Cloud Computing, Theory and Practice, Dan Marinescu



Spring 2023
Cloud and Edge Computing

Instructor : Dr. Bibhas Ghoshal   

Xen Architecture 

• Type 1 hypervisor: runs directly over hardware

• Trap-and-emulate architecture
        • Xen runs in ring 0, guest OS in ring 1
        • Xen sits in the top 64MB of address space of guests 
        • Guest OS traps to Xent o perform privileged actions

• A guest VM is called a domain
        • Special domain called dom0runs control/management software



Spring 2023
Cloud and Edge Computing

Instructor : Dr. Bibhas Ghoshal   

Dom 0 Components : Xen Store and Tool Stack  
● Xen Store – a Dom0 process. 
● Supports a system-wide registry and naming service. 
● Implemented as a hierarchical key-value storage.
●  A watch function informs listeners of changes of the key in storage they have 

subscribed to.
●  Communicates with guest VMs via shared memory using Dom0 privileges.

● Tool stack - responsible for creating, destroying, and managing the resources and 
privileges of VMs. 

● To create a new VM, a user provides a configuration file describing memory and CPU 
allocations and device configurations. 

● Tool stack parses this file and writes this information in Xen Store.  
● Takes advantage of Dom0 privileges to map guest memory, to load a kernel and virtual 

BIOS and to set up initial communication channels with Xen Store and with the virtual 
console when a new VM is created.

Figure Source : Cloud Computing, Theory and Practice, Dan Marinescu



Spring 2023
Cloud and Edge Computing

Instructor : Dr. Bibhas Ghoshal   

Xen : Strategies for Virtualization  

Figure Source : Cloud Computing, Theory and Practice, Dan Marinescu



Spring 2023
Cloud and Edge Computing

Instructor : Dr. Bibhas Ghoshal   

CPU Virtualization in Xen

Guest OS code modified to not invoke any privileged instruction

• Any privileged operation traps to Xen in ring 0

• Hyper calls: guest OS voluntarily invokes Xen to perform privileged ops

• Much like system calls from user process to kernel
• Synchronous: guest pauses while Xen services the hypercall

• Asynchronous event mechanism: communication from Xen to domain

• Much like interrupts from hardware to kernel
• Used to deliver hardware interrupts and other notifications to domain
• Domain registers event handler callback functions



Spring 2023
Cloud and Edge Computing

Instructor : Dr. Bibhas Ghoshal   

Trap Handling in Xen

When trap/interrupt occurs, Xen copies the trap frame onto the guest OS kernel stack, 
invokes guest interrupt handler

• Guest registers an interrupt descriptor table with Xen to handle traps
       • Interrupt handlers validated by Xen(check that no privileged segments loaded)

• Guest trap handlers work off information on kernel stack, no modifications needed to 
guest OS code
      • Except page fault handler, which needs to read CR2 register to find faulting address    
        (privileged operation)

     • Page fault handler modified to read faulting address from kernel stack (address placed on 
       stack by Xen)
•  What if interrupt handler still invokes privileged operations?

     • Traps to Xenagain and Xendetects this “double fault” (trap followed by another trap from interrupt   
         handler code) and terminates misbehaving guest

Figure Source : Cloud Computing, Theory and Practice, Dan Marinescu



Spring 2023
Cloud and Edge Computing

Instructor : Dr. Bibhas Ghoshal   

Memory Virtualization in Xen

One copy of combined GVAHPA page table maintained by guest OS

     • CR3 points to this page table
     • Like shadow page tables, but in guest memory, not in VMM

• Guest is given read-only access to guest “RAM” mappings (GPAHPA)
    • Using this, guest can construct combined GVAGPA mapping

• Guest page table is in guest memory, but validated by Xen
   • Guest marks its page table pages as read-only, cannot modify
   • When guest needs to update, it makes a hypercall to Xen to update page table
   • Xen validates updates (is guest accessing its slice of RAM?) and applies them
   • Batched updates for better performance

• Segment descriptor tables are also maintained similarly
  • Read-only copy in guest memory, updates validated and applied by Xen
  • Segments truncated to exclude top 64MB occupied by Xen



Spring 2023
Cloud and Edge Computing

Instructor : Dr. Bibhas Ghoshal   

Xen Abstractions for Network and I/O
● Each domain has one or more Virtual Network Interfaces (VIFs) which support the 

functionality of a network interface card. A VIF is attached to a Virtual Firewall-Router 
(VFR). 

● Split drivers have a front-end in the DomU and the back-end in Dom0;  the two 
communicate via a ring in shared memory.

● Ring - a circular queue of descriptors allocated by a domain and accessible within 
Xen.  Descriptors do not contain data, the data buffers are allocated off-band by the 
guest OS.

● Two rings of buffer descriptors, one for packet sending and one for packet receiving, 
are supported.

● To transmit a packet :
● a guest OS enqueues a buffer descriptor to the send ring, 
● then  Xen copies the descriptor and checks safety,
● copies only the packet header, not the payload, and 
● executes the matching rules.

Figure Source : Cloud Computing, Theory and Practice, Dan Marinescu
Consumer Request

(private pointer in Xen)

Producer  Request
(shared pointer updated 

by the guest OS)

Producer  Response
(shared pointer updated 

by Xen)

Consumer  Response
(private  pointer maintained by 

the guest OS)Response queue

Request queue

Unused
descriptors

Outstanding
descriptors

Bridge

Driver domain Guest domain

Backend Frontend

XEN 

Network
interface

NIC

(a)

(b)

I/O channel

Event channel



Spring 2023
Cloud and Edge Computing

Instructor : Dr. Bibhas Ghoshal   

Performance Comparison of VMs
The questions  examined are: 
(a) how performance scales up with the load; 
(b) the impact of a mix of applications; 
(c) implications of the load assignment 
     on individual servers?

Main conclusions:

1. Xen virtualization overhead of is higher than OpenVZ  
    primarily due to L2-cache misses. 

2. Performance degradation when the workload increases 
    is also noticeable for Xen. 

3. Hosting multiple tiers of the same application on the same server 
    is not an optimal solution.

Figure Source : Cloud Computing, Theory and Practice, Dan Marinescu

Web
server

Web
server

Web
server

Web
server

MySQL
server

MySQL
server

MySQL
server

MySQL
server

Web
server

MySQL
server

Web
server

MySQL
server

Web
server

MySQL
server

Web
server

MySQL
server

Web
server

MySQL
server

Web
server

Web
server

Web
server

Web
server

MySQL
server

MySQL
server

MySQL
server

MySQL
server

Web
server

Web
server

Web
server

Web
server

MySQL
server

MySQL
server

MySQL
server

MySQL
server

Web
server

MySQL
server

Xen

Xen

Xen

Linux

Linux

Linux

OpenVZ

OpenVZ

OpenVZ

(a)

(b)

(c)


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

