
Spring 2023
Cloud and Edge Computing

Instructor : Dr. Bibhas Ghoshal

Lecture 10 : Cloud Storages - Dynamo,
BigTable, Haystack

Dr. Bibhas Ghoshal

Assistant Professor

Department of Information Technology

Indian Institute of Information Technology Allahabad

Spring 2023
Cloud and Edge Computing

Instructor : Dr. Bibhas Ghoshal

Amamzon’s Dynamo
DynamoDB is a NoSQL database service for latency-sensitive applications that need consistent access
at any scale.

● Fully-managed database service designed to provide an always-on experience (responsive even when nodes fail).

● Supports both document and key-value store (distributed) models and has been used for mobile, web, gaming, IoT,
advertising, real-time analytics, and other applications
 - Map a key to a blob of in-structured data, stored across multiple nodes

● Stores data on SSDs to support latency-sensitive applications; typical requests take milliseconds to complete.
 - highly scalable (throughput scales with increasing nodes)

● Allows developers to specify the throughput capacity required for specific tables within their database using the
provisioned throughput feature to deliver predictable performance at any scale

● Weak consistency (eventual consistency): GET may not always return the latest value PUT in the past

 No atomicity, isolation, or consistency (ACID of RDBMS)
 GET may also return multiple conflicting values
 Suitable for applications that can tolerate inconsistencies (e.g., shopping cart)
 Building block for many Amazon services (S3, DynamoDB)

Spring 2023
Cloud and Edge Computing

Instructor : Dr. Bibhas Ghoshal

System Architecture

Spring 2023
Cloud and Edge Computing

Instructor : Dr. Bibhas Ghoshal

Dynamo DB Design Concerns and Solutions

● High availability is the primary concern. Updates should not be rejected even in
the wake of network partitions or server failures.

● Deliver predictive performance in addition to reliability and scalability.
● The services supported have stringent latency requirements and this precludes

supporting ACID properties.
● Strong consistency and high data availability cannot be achieved simultaneously.
● Availability can be increased by optimistic replication, allowing changes to

propagate to replicas in the background, while disconnected work is tolerated.
● In traditional data stores writes may be rejected if the data store cannot reach all,

or a majority of the replicas at a given time.
● Rather than implementing conflict resolution during writes and keeping the read

complexity simple, Dynamo increases the complexity of conflict resolution of read
operations.

Spring 2023
Cloud and Edge Computing

Instructor : Dr. Bibhas Ghoshal

Techniques to Achieve Design Objective

● Incremental scalability ensured by consistent hashing.
● High write availability based on the use of vector clocks with reconciliation.
● Handling temporary failures using sloppy quorum and hinted handoff. This

provides high availability and durability guarantees when some of the replicas are
not available

● Permanent failure recovery based on anti-entropy and Merkle trees. The
technique synchronizes divergent replicas in background.

● Gossip-based membership protocol and failure detection for membership and
failure detection. The advantage of this technique is that it preserves symmetry
and avoids having a centralized registry for storing membership and node
liveness information.

Spring 2023
Cloud and Edge Computing

Instructor : Dr. Bibhas Ghoshal

Key Idea of Dynamo

● Dynamo partitions the keys over the set of nodes using consistent hashing
• Every key is stored at a subset N of the total nodes (“preference list” of a key)

● Shared-nothing architecture: each replica independently stores state
• System can scale by adding more nodes

● Put operation: the key is written to a subset W of the N nodes
• Succeeds even if some subset of nodes are unavailable

● Get operation: the key is read back from some subset R of the N nodes
• Eventual consistency: get may not return latest put
• Multiple values can be returned, application has to reconcile

● Dynamo chooses R,W,N such that R+W > N, so that the latest value can be
 returned most of the times
• Quorum protocol
• R,W chosen to be less than N in order to achieve good latency

Spring 2023
Cloud and Edge Computing

Instructor : Dr. Bibhas Ghoshal

Server Organization
● The servers of the DynamoDB service are organized as a ring. Ring nodes B, C,

and D store keys in range (A,B), including the key k.

● A data item identified by a key is assigned to a storage server
by hashing the data item key to yield its position on the ring,
and then walking the ring clockwise to find the first node with
a position larger than the position of the item :

● A key is stored at the first N nodes which succeed the hash of the key in the circular
ring (preference list)

● A storage server is responsible for the ring region between itself and its
predecessor in the ring.

● First node on the list is the coordinator for the key
● GET/PUT operations at all nodes managed by coordinator

Spring 2023
Cloud and Edge Computing

Instructor : Dr. Bibhas Ghoshal

Eventual Consistency

This strategy allows updates to be propagated to all replicas asynchronously.

● A versioning system allows multiple versions of a data object to be present in the
data store at the same time. The result of each modification is a new and
immutable version of data.

● New versions often subsume the older ones and the system can use syntactic
reconciliation to determine the authoritative version.

● The system uses vector clocks, lists of (node, counter) pairs, to capture causality
of each version of a data object.

● When a client updates an object, it must specify the version it is updating by
passing the context it obtained from an earlier read operation, which contains the
vector clock information.

Spring 2023
Cloud and Edge Computing

Instructor : Dr. Bibhas Ghoshal

Eventual Consistency

This strategy allows updates to be propagated to all replicas asynchronously – In
case of PUT , coordinator does not wait for confirmation from all W nodes before
sending a reply to the client

● A versioning system allows multiple versions of a data object to be present in the
data store at the same time. The result of each modification is a new and
immutable version of data. - A get after a put can find multiple versions of the key
at different nodes

● New versions often subsume the older ones and the system can use syntactic
reconciliation to determine the authoritative version.

● The system uses vector clocks, lists of (node, counter) pairs, to capture causality
of each version of a data object.

● When a client updates an object, it must specify the version it is updating by
passing the context it obtained from an earlier read operation, which contains the
vector clock information.

Spring 2023
Cloud and Edge Computing

Instructor : Dr. Bibhas Ghoshal

Versioning mechanism : Vector clocks
Since multiple versions of a key-value pair can exist, need some version number to track
values

● Dynamo uses the idea of vector clocks to version the key-value pairs

● Vector clock is a set of (node, count) pairs, where the count is incremented locally at
every node

● Every node that handles a key will add/increment its entry in the vector clock

● Vector clock version number associated with value (also called “context”) is returned with
every get to the client, and the client sends it along with its next PUT request

• object, context = get(key)

• put(key, context, object)

● Suppose there are three nodes X, Y, Z handling a key

• Suppose client gets a value from X with vector clock [(X, nx), (Y, ny), (Z, nz)]

• Next put at X will increment the vector clock to [(X, nx+1), (Y, ny), (Z, nz)]

• If put done at Y instead, vector clock will be [(X, nx), (Y, ny+1), (Z, nz)]

Spring 2023
Cloud and Edge Computing

Instructor : Dr. Bibhas Ghoshal

Versioning mechanism : Sequence of events
Time Evolution

● Data is written by server Sa and the object Data1

with the associated clock [Sa,1] is created.
● The same server Sa writes again and the object Data2

with the associated clock [Sa,2] is created.

Data2 is a descendent of Data1 and over-writes it.
There may be replicas of Data1 at servers that have
not yet seen Data2.

● The same client updates the object and server Sb

handles the request; a new object, Data3,
and its associated clock [(S_{a}, 2), (S_{b}, 1)]
are created.

● A different client reads Data2 and then tries to update it,
 and this time server Sc handles her request.

A new object, Data4, a descendent of Data2, with version
clock is [(S_{a}, 2), (S_{c}, 1)] is created.

● Upon receiving Data4 and its clock, a server aware of
Data1 or Data2 could determine, that both are overwritten
by the new data and can be garbage collected.

Data1 ([Sa,1])

Data2 ([Sa,2])

Data3 ([Sa,2], [Sb,1]) Data4 ([Sa,2], [Sc,1])

Data5 ([Sa,3], [Sb,1], [Sc,1])

Writen by server Sa

Writen by server Sa

Writen by server Sb Writen by server Sc

Reconciled and
writen by server Sa

Spring 2023
Cloud and Edge Computing

Instructor : Dr. Bibhas Ghoshal

 Google’s BigTable

Semi-structured data store: does not support full relational database

model, simpler data format

 • Borrows ideas from parallel and in-memory databases

● Tables of rows, columns (strings). Each cell also has timestamp.
Maps row key, column key and timestamp to a value (array of bytes)

● Widely used by many systems at Google

 • Both batch processing and real time applications

 • Clients can control whether data on disk or in memory

● High availability, scalability, performance

Spring 2023
Cloud and Edge Computing

Instructor : Dr. Bibhas Ghoshal

Data Model
 Rows: atomic unit of reading and writing data

• Rows sorted alphabetically (users should pick row names suitably)
• Group of adjacent rows is called a tablet (unit of distributing data to machines)

Columns: grouped into small no. of families

• All columns in a family store similar type of data, treated similarly
• Family is granularity for specifying access control, locality (disk vs memory) etc.

 Timestamp of a cell acts as a version number and is provided by clients

• Last N versions stored
● Example Web table shown below

Spring 2023
Cloud and Edge Computing

Instructor : Dr. Bibhas Ghoshal

Big Table API
Bigtable's API allows users to create tables and manipulate various cells

● Examples of reading and writing tables

Spring 2023
Cloud and Edge Computing

Instructor : Dr. Bibhas Ghoshal

Building Blocks

● Leverages two existing systems of Google: SSTable and Chubby
● SSTable: file format used to store Bigtable data internally
• Immutable map of key-value pairs, stored on a sequence of blocks (64KB) on disk.

● Blocks stored on GFS (Google File System)
● Can lookup a value using key, or iterate over all key-value pairs
● Index of SSTable maps keys to disk blocks, loaded into memory when SSTable
opened

● Lookup only needs single disk access: lookup key in index to find block
location, then access disk block

● More efficient than storing files in other formats on regular filesystems

Spring 2023
Cloud and Edge Computing

Instructor : Dr. Bibhas Ghoshal

Building Blocks

Google File System: distributed file system on commodity hardware
● Designed to efficiently store a small number of large files (not POSIX API)
● GFS cluster has one master and multiple chunk servers (Linux machines)
● File divided into fixed size chunks, chunks replicated at multiple chunk servers
● Chunks stored at chunk servers on local disk, identified by a unique handle
● Master stores chunk handle chunk server mapping

Spring 2023
Cloud and Edge Computing

Instructor : Dr. Bibhas Ghoshal

Building Blocks

● Chubby: distributed lock service / distributed directory service
• Exposes a namespace of directories and files
• Users of chubby can acquire a lock on some directory/file and read/write its contents

● How is it useful?
• Suppose an application is built to run at one node, needs to migrate to multiple nodes for fault
tolerance. One way is to change app logic to run on multiple replicas, with some leader
election/consensus algorithm among replicas – hard work!
● Easier way: ask all replicas to lock a certain file using Chubby, whoever gets the lock is master.
Master shares data with replicas via Chubby files

● Internally, Chubby implements Paxos across its 5 replicas, in order to consistently maintain
replicated state of the lock namespace

● Chubby runs Paxos, so that other apps do not have to reimplement the logic
● Clients maintain sessions with Chubby servers and send requests to acquire/release locks

● If a session breaks (client fails), all locks held by a client are released.

Spring 2023
Cloud and Edge Computing

Instructor : Dr. Bibhas Ghoshal

Big Table Implementation

Components of the system:
• Tablet servers: store few hundred tablets (group of rows of a Big table)

• Master: distributes tablets to tablet servers, load balancing, handles failures of tablet
servers, creation/updation of table schema.

• Clients: read/write tablets at tablet servers

• How does master track tablet servers?
• Every tablet servers create its own unique file on Chubby

• Master periodically looks at these files to find list of healthy tablet servers, assigns
 each tablet to one tablet server

• If tablet server fails, Chubby connection lost, file is deleted, master reassigns its
 tablets to other servers.

• If master fails, it scans list of tablet servers, queries them for tablets, and
 reconstructs tablet assignment

Spring 2023
Cloud and Edge Computing

Instructor : Dr. Bibhas Ghoshal

Locating Tablets

Tablet locations stored in metadata tablets

• Locations of all metadata tablets stored in a root tablet

• Root tablet published in Chubby by master

• Clients cache locations of tablets: no need to query master

• No need to traverse the metadata tables

• Assume 1KB location information, 128 MB tablets
Each tablet stores 128K = 2^17 locations
Maximum filesize = 2^34 tablets = 2^61 bytes

Spring 2023
Cloud and Edge Computing

Instructor : Dr. Bibhas Ghoshal

Inside a Tablet Server

Persistent data is stored on GFS
• GFS handles replication, so tablet can be just stored

 at one tablet server

• Each tablet server has multiple immutable
SSTables and commit logs in GFS and a mem table
in memory

• List of all SSTables and commit logs of tablet server
 stored in metadata in Chubby

• Write operation:
• Changes first written to a commit log on GFS
• Recently committed writes are in memtable in

memory
• Old data is not deleted from SSTable, only

 deletion record written

• Read operation :
Reads from merged view of mem table and SSTables
• Latest value of a row is chosen from merged view
• Easy to merge as all tables are sorted

Spring 2023
Cloud and Edge Computing

Instructor : Dr. Bibhas Ghoshal

Inside a Tablet Server

Why immutable SSTable? Simplifies design considerably
● Can be accessed concurrently without locks during reads and writes
● Only mem table needs concurrency control

● Compactions
● Once enough data accumulates, memtable compacted into SSTable and stored in GFS
● Periodically, multiple SSTables merged to create fewer SSTables (handling deletions)

● Separate locality groups created for each column family
● Column families stored together in SSTables
● SSTable of a column group can be specified to be on disk or in-memory
● Compression format can be specified for a column group

● Caching at tablet server to improve performance
● Recently read key-value pairs from SSTable are cached
● Recently read blocks of SSTable are cached

Spring 2023
Cloud and Edge Computing

Instructor : Dr. Bibhas Ghoshal

Facebook’s Haystack

Some cloud storage systems are optimized for specific applications
• Facebook’s Haystack is optimized for photo storage

● Why not store photos as regular files on a POSIX-compliant
filesystem?

• Many attributes like permissions are meaningless
• Lot of metadata accesses (inodes) before actual photo access
•App specific knowledge: photos are written once, read often,
rarely modified or deleted

• High throughput, low latency, fault tolerance, with cost-
effectiveness

Spring 2023
Cloud and Edge Computing

Instructor : Dr. Bibhas Ghoshal

Design of Photo/Object Storage

Photos and other read-only objects are
served from Content Delivery Networks
(CDNs), e.g., Akamai
• DNS redirects to geographically closest
CDN servers
• If object cached in CDN, served directly
from CDN
• Else, fetch object from original storage and
serve, cache
• CDNs improve performance only for the
hottest objects found in cache
• Photos have a “long tail”: unpopular
photos form significant part of traffic
• Need to optimize photo storage even if
using CDN cache

Spring 2023
Cloud and Edge Computing

Instructor : Dr. Bibhas Ghoshal

NFS Based Photo/Object Storage

Each photo stored as a separate file on a
commercial NAS (Network Attached
Storage) box, served by NFS
• At least 3 disk accesses to read a photo
from filesystem
• Get inode number of file by reading parent
directory blocks), read inode block, then
fetch actual file
• Large directories spread over multiple
blocks
incur even higher overhead
• Can cache inodes in memory to save disk
accesses, but too much memory
consumed to store all inodes of all files

Spring 2023
Cloud and Edge Computing

Instructor : Dr. Bibhas Ghoshal

Motivation

Ideally, access photo directly on disk, without multiple disk accesses

• Metadata (inode) to locate photo on disk should be in memory

• However, caching all inodes for even unpopular photos is not possible

• Existing systems do not have the right “RAM-to-disk” ratio

• Each photo as a separate file, each inode occupied ~100 bytes in memory

• Too much memory for metadata in general purpose filesystems

• Goal: reduce metadata per photo, so that all metadata in memory,

only one disk access even for unpopular photos

• Key idea: new filesystem, store multiple photos in large files, minimal

metadata per photo

• Redesigning filesystem is better than buying more NAS appliances / web

 servers / CDN storage

Spring 2023
Cloud and Edge Computing

Instructor : Dr. Bibhas Ghoshal

Haystack Architecture

3 components: Store, Cache, Directory
• Store has the actual photos
• Each server has many physical volumes (disks)

which are organized into logical volumes

• Cache caches popular content that is not already
cached in CDNs
• Directory maintains location mapping (which
CDN/cache/store/logical volume may have
photo)

• When user requests photo from Facebook’s
 webserver, it looks up directory
• Directory returns a URL which encodes the
 location of the photo:

CDN/Cache/Store/logical volume info

• Can check in CDN first, or directly go to cache
• Balances load across store machines

Spring 2023
Cloud and Edge Computing

Instructor : Dr. Bibhas Ghoshal

Upload a Photo

Upload path:

• Photo goes to webserver, which looks up
Directory

• Directory returns the location of the Store
server and logical volume where photo to
be stored

• A logical volume is replicated at multiple
physical volumes for resiliency

• Web server uploads photos at the multiple
locations of a logical volume

Spring 2023
Cloud and Edge Computing

Instructor : Dr. Bibhas Ghoshal

Store Server Architecture

Each Store server has multiple physical volumes/disks
● Physical volume is a large file (~100GB) with millions of photos
• Each physical volume belongs to one of the logical volumes

● Logical volume = collection of different physical volumes on different servers
• When a photo stored on a logical volume, it is replicated at all physical volumes of

the logical volume, for resiliency
• Directory has all info on physical and logical volumes on all store servers

• Photo identified by Store machine ID, logical volume, photo identifier/key
• Go to server, find physical volume associated with logical volume, lookup photo

• New machine added to store: write-enabled, accepts uploads
• Once capacity is full, moves to read-only mode, only serves photos
• Cache mostly caches data from write-enabled store machines, because the most

recently uploaded photos are frequently accessed by users

Spring 2023
Cloud and Edge Computing

Instructor : Dr. Bibhas Ghoshal

Store Server : Disk Layout

Each physical volume has a
Super block and a set of “needles”
• A single file with all photos

• Needle = photo + all its
metadata (key, alternate key,
size, etc.)

• Alternate key is a way to
distinguish multiple versions of
a photo (e.g., different
Resolutions)

• Large file stored on disk using
existing filesystems (XFS)

Spring 2023
Cloud and Edge Computing

Instructor : Dr. Bibhas Ghoshal

Store Server : In Memory Data Structures

Store server has open file descriptor for each physical volume
● In-memory index mapping photo key/alternate key to offset within disk

● Lower overhead than full-fledged inodes

● Read request: lookup photo’s key in index, find disk offset, read data from disk
● Achieved goal of one disk access per photo

● Write request of new photo: appended to disk at end, index updated
● Modification/deletion of existing photo (rare): new copy appended at

end, index updated to point to latest version
● Modifications (e.g., rotations) have same key and alternate key

• Old data not overwritten on disk for modifications or deletions, instead updated
entry (or deletion record) is appended to disk

● Periodic compactions of disk files to delete stale entries

Spring 2023
Cloud and Edge Computing

Instructor : Dr. Bibhas Ghoshal

Updating index file

Where is index stored? In theory, no need to store index on disk,
reconstructed from disk data on booting

• If two entries on disk for same photo key (e.g., deletion or modification),
index points to latest entry

● However, may take a long time for large disks

● Periodically checkpoint index into a file on disk for quick bootup:
● Index file written to disk asynchronously after appending actual data to disk
• If system crashes after updating actual data but before updating index, index

file on disk may be stale
● For example, we can have orphans (photos on disk without entry in index)
● During bootup, start with index file, see latest entry in index, all disk
recordsafter that are read and incorporated into index

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

