
The Google File System
Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung, Google
ACM Symposium on Operating Systems Principles (SOSP), 2003.

Presented by Stacy Patterson

1

Outline
1. Background and Introduction
2. Design Considerations
3. System Description
4. “Evaluation” Results
5. Related Work
6. Conclusions

2

Background on File Systems

• “A file system is the methods and data structures than an
OS uses to store data.” [1]

• Divides data into logical units – files
• Addressable by file names

• Usually also supports hierarchical nesting (directories)

• Supports operations to access data:
• Create file, write to file, read from file, delete file, etc.

3

Distributed File Systems
• Data stored on different machines.
• Provides same (similar) interface as centralized file

system.

• Should handle concurrent access to files in some way.

• May provide:
• Replication for fault tolerance.
• Caching at clients for performance.

4

Objectives of Google File System
• A distributed file system that meets Google’s needs.
• Standard distributed systems stuff:

scalability, reliability, availability
• Google-specific needs:

• Runs on hundreds/thousands of commodity machines.
• Failures and errors are the norm.
• Files are “huge” – Multi GB.
• Most file mutations are appends, e.g., data streams from

continuously running apps.

• Google can co-design file system API and applications.

5

Design Assumptions
• System components often fail.

• Store modest number of large files.
Few million files, each 100 MB or larger.

• Reads: primarily large streaming or small random.
• Writes: often large sequential appends.

• Often concurrent – hundreds of simultaneous producers.

• High sustained bandwidth more important than low
latency.

6

Goals for Interface
• Provide familiar file system interface:

• File operations: open, close, read, write.

• Also provide
• Snapshot operation: create copy of directory tree
• Record-append operation: atomic operation to append

record to end of file.

7

GFS Architecture

8

Legend:

Data messages
Control messages

Application
(file name, chunk index)

(chunk handle,
chunk locations)

GFS master

File namespace

/foo/bar

Instructions to chunkserver

Chunkserver state

GFS chunkserverGFS chunkserver
(chunk handle, byte range)

chunk data

chunk 2ef0

Linux file system Linux file system

GFS client

Figure 1: GFS Architecture

and replication decisions using global knowledge. However,
we must minimize its involvement in reads and writes so
that it does not become a bottleneck. Clients never read
and write file data through the master. Instead, a client asks
the master which chunkservers it should contact. It caches
this information for a limited time and interacts with the
chunkservers directly for many subsequent operations.

Let us explain the interactions for a simple read with refer-
ence to Figure 1. First, using the fixed chunk size, the client
translates the file name and byte offset specified by the ap-
plication into a chunk index within the file. Then, it sends
the master a request containing the file name and chunk
index. The master replies with the corresponding chunk
handle and locations of the replicas. The client caches this
information using the file name and chunk index as the key.

The client then sends a request to one of the replicas,
most likely the closest one. The request specifies the chunk
handle and a byte range within that chunk. Further reads
of the same chunk require no more client-master interaction
until the cached information expires or the file is reopened.
In fact, the client typically asks for multiple chunks in the
same request and the master can also include the informa-
tion for chunks immediately following those requested. This
extra information sidesteps several future client-master in-
teractions at practically no extra cost.

2.5 Chunk Size
Chunk size is one of the key design parameters. We have

chosen 64 MB, which is much larger than typical file sys-
tem block sizes. Each chunk replica is stored as a plain
Linux file on a chunkserver and is extended only as needed.
Lazy space allocation avoids wasting space due to internal
fragmentation, perhaps the greatest objection against such
a large chunk size.

A large chunk size offers several important advantages.
First, it reduces clients’ need to interact with the master
because reads and writes on the same chunk require only
one initial request to the master for chunk location informa-
tion. The reduction is especially significant for our work-
loads because applications mostly read and write large files
sequentially. Even for small random reads, the client can
comfortably cache all the chunk location information for a
multi-TB working set. Second, since on a large chunk, a
client is more likely to perform many operations on a given
chunk, it can reduce network overhead by keeping a persis-

tent TCP connection to the chunkserver over an extended
period of time. Third, it reduces the size of the metadata
stored on the master. This allows us to keep the metadata
in memory, which in turn brings other advantages that we
will discuss in Section 2.6.1.

On the other hand, a large chunk size, even with lazy space
allocation, has its disadvantages. A small file consists of a
small number of chunks, perhaps just one. The chunkservers
storing those chunks may become hot spots if many clients
are accessing the same file. In practice, hot spots have not
been a major issue because our applications mostly read
large multi-chunk files sequentially.

However, hot spots did develop when GFS was first used
by a batch-queue system: an executable was written to GFS
as a single-chunk file and then started on hundreds of ma-
chines at the same time. The few chunkservers storing this
executable were overloaded by hundreds of simultaneous re-
quests. We fixed this problem by storing such executables
with a higher replication factor and by making the batch-
queue system stagger application start times. A potential
long-term solution is to allow clients to read data from other
clients in such situations.

2.6 Metadata
The master stores three major types of metadata: the file

and chunk namespaces, the mapping from files to chunks,
and the locations of each chunk’s replicas. All metadata is
kept in the master’s memory. The first two types (names-
paces and file-to-chunk mapping) are also kept persistent by
logging mutations to an operation log stored on the mas-
ter’s local disk and replicated on remote machines. Using
a log allows us to update the master state simply, reliably,
and without risking inconsistencies in the event of a master
crash. The master does not store chunk location informa-
tion persistently. Instead, it asks each chunkserver about its
chunks at master startup and whenever a chunkserver joins
the cluster.

2.6.1 In-Memory Data Structures
Since metadata is stored in memory, master operations are

fast. Furthermore, it is easy and efficient for the master to
periodically scan through its entire state in the background.
This periodic scanning is used to implement chunk garbage
collection, re-replication in the presence of chunkserver fail-
ures, and chunk migration to balance load and disk space

File Chunks
• Files divided into fixed sized chunks – 64 MB

• Each chunk has unique ID, assigned by master.
• Client can translate file offset into chunk index.

• Chunkservers store chunks as Linux files.
• Chunk replicated on multiple chunkservers (3 by default).

• Clients do not cache chunk data.

9

Chunk Size

• Advantages of “large” chunk size:

• Limits client interaction with master.

• For sequential access, client can use persistent TCP

connection to chunkserever.

• Reduces amount of metadata at master.

• Disadvantages

• Internal fragmentation – GFS uses lazy space allocation to

minimize this.

• Hot spots.

10

The Master
• GFS has a single master.
• Master stores metadata: namespace and chunk information.

• All metadata (e.g., namespace) changes must be done
through the master.

• Master controls system-wide activities:
• Chunk lease management
• Garbage collection
• Chunk migration

• Communicates with chunkservers in heartbeat messages.
• Give instructions and collects chunkserver state

11

More about the Master
• Master stores 3 types of metadata

• (1) File and chunk namespaces
• (2) Mapping from files to chunks
• (3) Locations of chunk replicas.

• All stored in memory.
• (1) and (2) also persisted in operation log.

• Stored on disk and replicated on other machines.

• Master learns (3) on startup by asking chunkservers what
chunks they have

12

Operation Log
• Record of metadata changes (add/delete files and directories).

• Defines order of concurrent operations.
• Write-ahead log

• Master responds to client requests only after flushing records to
local and remote disks.

• On startup, master recovers state by replaying log.

• Small log = fast startup.

• Limit log size through non-blocking checkpointing.
• Switch to new log file and create checkpoint in separate thread.

13

System Interactions
• Mutation: an operation that changes the contents or metatdata of

a chunk.
• E.g., write or append.

• Each chunk has primary replica and several secondary replicas.
• Master grants lease to primary (60 seconds)
• Primary can request and receive lease extensions.
• Master can revoke lease.

• Primary picks serial order for applying all mutations to a chunk.
• All replicas follow this order.

14

Read Operation
1. Application issues read request.
2. GFS client translates read request into file name and

chunk index.
Requests chunk locations from master.

3. Master responds with chunk name, primary and
secondary replica locations.
Client caches location info.

4. Client picks replica (usually closest) and sends read
request.

5. Chunkserver responds with data.
6. Client forwards data to application.

15

Write Operation
Application issues write request
1. GFS client translates request to filename, chunk index

and sends request to master.
If no chunkserver has lease, master grants one.
Sends primary and secondary chunkserver locations to
client.

2. Client caches this info.
Only contacts master again if primary fails or primary
loses lease.

3. Client sends data to replicas (pipelined).

16

Data Flow

17

Primary
Replica

Secondary
Replica B

Secondary
Replica A

Master

Legend:

Control

Data

3

Client
2

step 14

5

6

6

7

Figure 2: Write Control and Data Flow

becomes unreachable or replies that it no longer holds
a lease.

3. The client pushes the data to all the replicas. A client
can do so in any order. Each chunkserver will store
the data in an internal LRU buffer cache until the
data is used or aged out. By decoupling the data flow
from the control flow, we can improve performance by
scheduling the expensive data flow based on the net-
work topology regardless of which chunkserver is the
primary. Section 3.2 discusses this further.

4. Once all the replicas have acknowledged receiving the
data, the client sends a write request to the primary.
The request identifies the data pushed earlier to all of
the replicas. The primary assigns consecutive serial
numbers to all the mutations it receives, possibly from
multiple clients, which provides the necessary serial-
ization. It applies the mutation to its own local state
in serial number order.

5. The primary forwards the write request to all sec-
ondary replicas. Each secondary replica applies mu-
tations in the same serial number order assigned by
the primary.

6. The secondaries all reply to the primary indicating
that they have completed the operation.

7. The primary replies to the client. Any errors encoun-
tered at any of the replicas are reported to the client.
In case of errors, the write may have succeeded at the
primary and an arbitrary subset of the secondary repli-
cas. (If it had failed at the primary, it would not
have been assigned a serial number and forwarded.)
The client request is considered to have failed, and the
modified region is left in an inconsistent state. Our
client code handles such errors by retrying the failed
mutation. It will make a few attempts at steps (3)
through (7) before falling back to a retry from the be-
ginning of the write.

If a write by the application is large or straddles a chunk
boundary, GFS client code breaks it down into multiple
write operations. They all follow the control flow described
above but may be interleaved with and overwritten by con-
current operations from other clients. Therefore, the shared

file region may end up containing fragments from different
clients, although the replicas will be identical because the in-
dividual operations are completed successfully in the same
order on all replicas. This leaves the file region in consistent
but undefined state as noted in Section 2.7.

3.2 Data Flow
We decouple the flow of data from the flow of control to

use the network efficiently. While control flows from the
client to the primary and then to all secondaries, data is
pushed linearly along a carefully picked chain of chunkservers
in a pipelined fashion. Our goals are to fully utilize each
machine’s network bandwidth, avoid network bottlenecks
and high-latency links, and minimize the latency to push
through all the data.

To fully utilize each machine’s network bandwidth, the
data is pushed linearly along a chain of chunkservers rather
than distributed in some other topology (e.g., tree). Thus,
each machine’s full outbound bandwidth is used to trans-
fer the data as fast as possible rather than divided among
multiple recipients.

To avoid network bottlenecks and high-latency links (e.g.,
inter-switch links are often both) as much as possible, each
machine forwards the data to the “closest” machine in the
network topology that has not received it. Suppose the
client is pushing data to chunkservers S1 through S4. It
sends the data to the closest chunkserver, say S1. S1 for-
wards it to the closest chunkserver S2 through S4 closest to
S1, say S2. Similarly, S2 forwards it to S3 or S4, whichever
is closer to S2, and so on. Our network topology is simple
enough that “distances” can be accurately estimated from
IP addresses.

Finally, we minimize latency by pipelining the data trans-
fer over TCP connections. Once a chunkserver receives some
data, it starts forwarding immediately. Pipelining is espe-
cially helpful to us because we use a switched network with
full-duplex links. Sending the data immediately does not
reduce the receive rate. Without network congestion, the
ideal elapsed time for transferring B bytes to R replicas is
B/T + RL where T is the network throughput and L is la-
tency to transfer bytes between two machines. Our network
links are typically 100 Mbps (T), and L is far below 1 ms.
Therefore, 1 MB can ideally be distributed in about 80 ms.

3.3 Atomic Record Appends
GFS provides an atomic append operation called record

append. In a traditional write, the client specifies the off-
set at which data is to be written. Concurrent writes to
the same region are not serializable: the region may end up
containing data fragments from multiple clients. In a record
append, however, the client specifies only the data. GFS
appends it to the file at least once atomically (i.e., as one
continuous sequence of bytes) at an offset of GFS’s choosing
and returns that offset to the client. This is similar to writ-
ing to a file opened in O APPEND mode in Unix without the
race conditions when multiple writers do so concurrently.

Record append is heavily used by our distributed applica-
tions in which many clients on different machines append
to the same file concurrently. Clients would need addi-
tional complicated and expensive synchronization, for ex-
ample through a distributed lock manager, if they do so
with traditional writes. In our workloads, such files often

• Client forwards data to
closest replica.

• Replica forwards to next
closest replica, etc.

• Data pipelined over TCP

Write Operation (2)
4. After all replicas have data, client sends write request to

primary.
Primary assigns serial number to mutation.

5. Primary forwards write request and serial number to all
replicas.
Secondaries apply mutations in serial number order.

6. Secondaries reply to primary.
7. Primary replies to client.

Reports any errors at replicas so client can retry if needed.

18

Write Operation (3)
• If write operation is large or involves multiple chunks,

GFS client breaks it into several smaller write operations.
• These may be interleaved with concurrent writes from other

clients.
• Replicas have same mutation order, but writes are not

serialized.

19

Large Write B

Large write A

Chunk
Replica

Record-Append Operation
• Record-append is atomic.
• Client only specifies file. GFS determines the file offset.

• Similar to write operation, except:
• Client sends data to all replicas that hold last file chunk (pipelined)
• Client sends appendrequest to primary.
• If record fits in chunk

• Primary appends record. Sends offset to secondaries
• Secondaries write data at same offset.

• If record does not fit:
• Primary pads chunk to max size. Tells secondaries to do

same.
• Tells client to retry on next chunk.

20

Snapshot Operation
• Snapshot makes a copy of a file or directory tree.
• Uses standard copy-on-write.

• When master receives snapshot request, revokes leases.
• All subsequent writes will require contacting master.

• On first write request for a chunk C:
• Master defers replying to client.
• Picks new chunk handle C’.
• Asks all chunkservers that hold C to copy to C’.
• Master grants replica lease on C’ and replies to client.

21

Consistency Model
• For file region:

• Region is consistent if all clients will see same data, no matter
which replica is read.

• Region is defined if, after a mutation, it is consistent and all clients
see the entire mutation.

• Non-concurrent successful mutation leaves region defined.
• Concurrent successful mutations leave region consistent, but maybe

not defined.
• Mingled fragments from multiple mutations.

• Failed mutation leaves region undefined.

22

Consistency Model (2)
• Replicas may have defined regions interleaved with undefined

regions (because of failed mutations).

• Record-append:
• If record append fails at any replica, client retries.
• But some replicas may have record before retry.
• Retry gets new offset.
• Record-append may have duplicates entries.

• Applications must be able to deal with duplicates.

23

Namespace Management
• File namespace mutations are atomic – all handled by

master.

• Use read locks and write locks to manage concurrent
operations.
• Can create two files in same directory at same time.

• 2 read locks on directory
• 1 write lock for each new file

• Can’t create a file in directory while it is being snapshotted.
• Write lock required for both operations

24

Replica Placement
• Master decides where to place replicas.

• Goals of placement policy
• 1. Maximize reliability and availability.
• 2. Maximize network bandwidth utilization.

• Not enough to put replicas on multiple machines.
• Also must put replicas on different racks.

• Ensures chunks survive single rack failure.
• Also means chunk access can use bandwidth on multiple

racks.
• Drawback: write must access multiple racks

25

Replica Management
• Replica placement policy:

• 1. Place new chunks on under-utilized servers.
• 2. Limit number of new chunks on single server.

• New chunks accessed more frequently.
• 3. Place replicas on different racks

• Locations for new chunks and new replicas chosen according to this
policy.

• Master periodically rebalances.
• Moves replicas for better load distribution.

26

Garbage Collection
• When file is deleted:

• Master logs the delete operation.
• Master renames file to hidden file.

• Periodically, master scans namespace
• Deletes hidden files over 3 days old and removes metadata.
• Identifies orphan chunks and erases metadata.

• In heartbeat messages:
• Chunkservers tell master which chunks they have.
• Master replies with list of chunks that can be deleted.

27

Stale Replica Detection
• Chunk may become stale if replica misses mutation.

• E.g., If it is down when mutation occurs.

• Master maintains chunk version number.
• New version number assigned when lease is granted to primary.
• All replicas record version number.

• When chunkserver restarts
• Reports its list of chunks and versions numbers to master.
• Master checks for stale replicas by checking version numbers.
• If replica is stale, Master acts as if it does not exist.

• Stale replicas removed in regular garbage collection.

28

Fault Tolerance Details

• Designed for high availability

• Fast recovery of master and chunkservers (seconds).

• Chunk replication.

• Master replication.

• Shadow masters provides read-only access.

• Data Integrity

• Chunkservers use checksumming to detect data corruption.

• Checksums over 64 KB blocks.

• If data is corrupted, master makes another replica.

Corrupted chunk replica is garbage collected.

29

Evaluation Setup

• Micro-benchmarks
• One master, 2 master replicas

• 16 chunkservers

• 16 clients

• All machines: dual 1.4 GHz PIII processors, 2GB memory, 2 80 GB
5400 rpm disks, 100 Mbs full-duplex ethernet.

• All GFS machines connected one switch.
All clients connected to another.
1Gbps link between them.

30

Micro-Benchmark: Reads
• N clients reads simultaneously.
• Each client selects random 4MB region from 320 GB file

set.

• Repeated 256 times, so each client reads 1GB data.

31

32

0 5 10 15
Number of clients N

0

50

100
R

ea
d

ra
te

 (M
B

/s
)

Network limit

Aggregate read rate

(a) Reads

0 5 10 15
Number of clients N

0

20

40

60

W
ri

te
 ra

te
 (M

B
/s

)

Network limit

Aggregate write rate

(b) Writes

0 5 10 15
Number of clients N

0

5

10

A
pp

en
d

ra
te

 (M
B

/s
) Network limit

Aggregate append rate

(c) Record appends

Figure 3: Aggregate Throughputs. Top curves show theoretical limits imposed by our network topology. Bottom curves
show measured throughputs. They have error bars that show 95% confidence intervals, which are illegible in some cases
because of low variance in measurements.

Cluster A B

Read rate (last minute) 583 MB/s 380 MB/s
Read rate (last hour) 562 MB/s 384 MB/s
Read rate (since restart) 589 MB/s 49 MB/s
Write rate (last minute) 1 MB/s 101 MB/s
Write rate (last hour) 2 MB/s 117 MB/s
Write rate (since restart) 25 MB/s 13 MB/s
Master ops (last minute) 325 Ops/s 533 Ops/s
Master ops (last hour) 381 Ops/s 518 Ops/s
Master ops (since restart) 202 Ops/s 347 Ops/s

Table 3: Performance Metrics for Two GFS Clusters

The read rates were much higher than the write rates.
The total workload consists of more reads than writes as we
have assumed. Both clusters were in the middle of heavy
read activity. In particular, A had been sustaining a read
rate of 580 MB/s for the preceding week. Its network con-
figuration can support 750 MB/s, so it was using its re-
sources efficiently. Cluster B can support peak read rates of
1300 MB/s, but its applications were using just 380 MB/s.

6.2.4 Master Load
Table 3 also shows that the rate of operations sent to the

master was around 200 to 500 operations per second. The
master can easily keep up with this rate, and therefore is
not a bottleneck for these workloads.

In an earlier version of GFS, the master was occasionally
a bottleneck for some workloads. It spent most of its time
sequentially scanning through large directories (which con-
tained hundreds of thousands of files) looking for particular
files. We have since changed the master data structures to
allow efficient binary searches through the namespace. It
can now easily support many thousands of file accesses per
second. If necessary, we could speed it up further by placing
name lookup caches in front of the namespace data struc-
tures.

6.2.5 Recovery Time
After a chunkserver fails, some chunks will become under-

replicated and must be cloned to restore their replication
levels. The time it takes to restore all such chunks depends
on the amount of resources. In one experiment, we killed a
single chunkserver in cluster B. The chunkserver had about

15,000 chunks containing 600 GB of data. To limit the im-
pact on running applications and provide leeway for schedul-
ing decisions, our default parameters limit this cluster to
91 concurrent clonings (40% of the number of chunkservers)
where each clone operation is allowed to consume at most
6.25 MB/s (50 Mbps). All chunks were restored in 23.2 min-
utes, at an effective replication rate of 440 MB/s.

In another experiment, we killed two chunkservers each
with roughly 16,000 chunks and 660 GB of data. This double
failure reduced 266 chunks to having a single replica. These
266 chunks were cloned at a higher priority, and were all
restored to at least 2x replication within 2 minutes, thus
putting the cluster in a state where it could tolerate another
chunkserver failure without data loss.

6.3 Workload Breakdown
In this section, we present a detailed breakdown of the

workloads on two GFS clusters comparable but not identi-
cal to those in Section 6.2. Cluster X is for research and
development while cluster Y is for production data process-
ing.

6.3.1 Methodology and Caveats
These results include only client originated requests so

that they reflect the workload generated by our applications
for the file system as a whole. They do not include inter-
server requests to carry out client requests or internal back-
ground activities, such as forwarded writes or rebalancing.

Statistics on I/O operations are based on information
heuristically reconstructed from actual RPC requests logged
by GFS servers. For example, GFS client code may break a
read into multiple RPCs to increase parallelism, from which
we infer the original read. Since our access patterns are
highly stylized, we expect any error to be in the noise. Ex-
plicit logging by applications might have provided slightly
more accurate data, but it is logistically impossible to re-
compile and restart thousands of running clients to do so
and cumbersome to collect the results from as many ma-
chines.

One should be careful not to overly generalize from our
workload. Since Google completely controls both GFS and
its applications, the applications tend to be tuned for GFS,
and conversely GFS is designed for these applications. Such
mutual influence may also exist between general applications

Micro-Benchmark: Writes
• N clients write simultaneously to N distinct files.
• Each writes 1GB data to new file, series of 1MB writes.

• No concurrent writes to same chunk.

33

34

0 5 10 15
Number of clients N

0

50

100

R
ea

d
ra

te
 (M

B
/s

)

Network limit

Aggregate read rate

(a) Reads

0 5 10 15
Number of clients N

0

20

40

60
W

ri
te

 ra
te

 (M
B

/s
)

Network limit

Aggregate write rate

(b) Writes

0 5 10 15
Number of clients N

0

5

10

A
pp

en
d

ra
te

 (M
B

/s
) Network limit

Aggregate append rate

(c) Record appends

Figure 3: Aggregate Throughputs. Top curves show theoretical limits imposed by our network topology. Bottom curves
show measured throughputs. They have error bars that show 95% confidence intervals, which are illegible in some cases
because of low variance in measurements.

Cluster A B

Read rate (last minute) 583 MB/s 380 MB/s
Read rate (last hour) 562 MB/s 384 MB/s
Read rate (since restart) 589 MB/s 49 MB/s
Write rate (last minute) 1 MB/s 101 MB/s
Write rate (last hour) 2 MB/s 117 MB/s
Write rate (since restart) 25 MB/s 13 MB/s
Master ops (last minute) 325 Ops/s 533 Ops/s
Master ops (last hour) 381 Ops/s 518 Ops/s
Master ops (since restart) 202 Ops/s 347 Ops/s

Table 3: Performance Metrics for Two GFS Clusters

The read rates were much higher than the write rates.
The total workload consists of more reads than writes as we
have assumed. Both clusters were in the middle of heavy
read activity. In particular, A had been sustaining a read
rate of 580 MB/s for the preceding week. Its network con-
figuration can support 750 MB/s, so it was using its re-
sources efficiently. Cluster B can support peak read rates of
1300 MB/s, but its applications were using just 380 MB/s.

6.2.4 Master Load
Table 3 also shows that the rate of operations sent to the

master was around 200 to 500 operations per second. The
master can easily keep up with this rate, and therefore is
not a bottleneck for these workloads.

In an earlier version of GFS, the master was occasionally
a bottleneck for some workloads. It spent most of its time
sequentially scanning through large directories (which con-
tained hundreds of thousands of files) looking for particular
files. We have since changed the master data structures to
allow efficient binary searches through the namespace. It
can now easily support many thousands of file accesses per
second. If necessary, we could speed it up further by placing
name lookup caches in front of the namespace data struc-
tures.

6.2.5 Recovery Time
After a chunkserver fails, some chunks will become under-

replicated and must be cloned to restore their replication
levels. The time it takes to restore all such chunks depends
on the amount of resources. In one experiment, we killed a
single chunkserver in cluster B. The chunkserver had about

15,000 chunks containing 600 GB of data. To limit the im-
pact on running applications and provide leeway for schedul-
ing decisions, our default parameters limit this cluster to
91 concurrent clonings (40% of the number of chunkservers)
where each clone operation is allowed to consume at most
6.25 MB/s (50 Mbps). All chunks were restored in 23.2 min-
utes, at an effective replication rate of 440 MB/s.

In another experiment, we killed two chunkservers each
with roughly 16,000 chunks and 660 GB of data. This double
failure reduced 266 chunks to having a single replica. These
266 chunks were cloned at a higher priority, and were all
restored to at least 2x replication within 2 minutes, thus
putting the cluster in a state where it could tolerate another
chunkserver failure without data loss.

6.3 Workload Breakdown
In this section, we present a detailed breakdown of the

workloads on two GFS clusters comparable but not identi-
cal to those in Section 6.2. Cluster X is for research and
development while cluster Y is for production data process-
ing.

6.3.1 Methodology and Caveats
These results include only client originated requests so

that they reflect the workload generated by our applications
for the file system as a whole. They do not include inter-
server requests to carry out client requests or internal back-
ground activities, such as forwarded writes or rebalancing.

Statistics on I/O operations are based on information
heuristically reconstructed from actual RPC requests logged
by GFS servers. For example, GFS client code may break a
read into multiple RPCs to increase parallelism, from which
we infer the original read. Since our access patterns are
highly stylized, we expect any error to be in the noise. Ex-
plicit logging by applications might have provided slightly
more accurate data, but it is logistically impossible to re-
compile and restart thousands of running clients to do so
and cumbersome to collect the results from as many ma-
chines.

One should be careful not to overly generalize from our
workload. Since Google completely controls both GFS and
its applications, the applications tend to be tuned for GFS,
and conversely GFS is designed for these applications. Such
mutual influence may also exist between general applications

Micro-Benchmark: Record Appends
• N clients append to single file simultaneously.

• What do they append?
• How many append invocations are there?

35

36

0 5 10 15
Number of clients N

0

50

100

R
ea

d
ra

te
 (M

B
/s

)

Network limit

Aggregate read rate

(a) Reads

0 5 10 15
Number of clients N

0

20

40

60

W
ri

te
 ra

te
 (M

B
/s

)

Network limit

Aggregate write rate

(b) Writes

0 5 10 15
Number of clients N

0

5

10
A

pp
en

d
ra

te
 (M

B
/s

) Network limit

Aggregate append rate

(c) Record appends

Figure 3: Aggregate Throughputs. Top curves show theoretical limits imposed by our network topology. Bottom curves
show measured throughputs. They have error bars that show 95% confidence intervals, which are illegible in some cases
because of low variance in measurements.

Cluster A B

Read rate (last minute) 583 MB/s 380 MB/s
Read rate (last hour) 562 MB/s 384 MB/s
Read rate (since restart) 589 MB/s 49 MB/s
Write rate (last minute) 1 MB/s 101 MB/s
Write rate (last hour) 2 MB/s 117 MB/s
Write rate (since restart) 25 MB/s 13 MB/s
Master ops (last minute) 325 Ops/s 533 Ops/s
Master ops (last hour) 381 Ops/s 518 Ops/s
Master ops (since restart) 202 Ops/s 347 Ops/s

Table 3: Performance Metrics for Two GFS Clusters

The read rates were much higher than the write rates.
The total workload consists of more reads than writes as we
have assumed. Both clusters were in the middle of heavy
read activity. In particular, A had been sustaining a read
rate of 580 MB/s for the preceding week. Its network con-
figuration can support 750 MB/s, so it was using its re-
sources efficiently. Cluster B can support peak read rates of
1300 MB/s, but its applications were using just 380 MB/s.

6.2.4 Master Load
Table 3 also shows that the rate of operations sent to the

master was around 200 to 500 operations per second. The
master can easily keep up with this rate, and therefore is
not a bottleneck for these workloads.

In an earlier version of GFS, the master was occasionally
a bottleneck for some workloads. It spent most of its time
sequentially scanning through large directories (which con-
tained hundreds of thousands of files) looking for particular
files. We have since changed the master data structures to
allow efficient binary searches through the namespace. It
can now easily support many thousands of file accesses per
second. If necessary, we could speed it up further by placing
name lookup caches in front of the namespace data struc-
tures.

6.2.5 Recovery Time
After a chunkserver fails, some chunks will become under-

replicated and must be cloned to restore their replication
levels. The time it takes to restore all such chunks depends
on the amount of resources. In one experiment, we killed a
single chunkserver in cluster B. The chunkserver had about

15,000 chunks containing 600 GB of data. To limit the im-
pact on running applications and provide leeway for schedul-
ing decisions, our default parameters limit this cluster to
91 concurrent clonings (40% of the number of chunkservers)
where each clone operation is allowed to consume at most
6.25 MB/s (50 Mbps). All chunks were restored in 23.2 min-
utes, at an effective replication rate of 440 MB/s.

In another experiment, we killed two chunkservers each
with roughly 16,000 chunks and 660 GB of data. This double
failure reduced 266 chunks to having a single replica. These
266 chunks were cloned at a higher priority, and were all
restored to at least 2x replication within 2 minutes, thus
putting the cluster in a state where it could tolerate another
chunkserver failure without data loss.

6.3 Workload Breakdown
In this section, we present a detailed breakdown of the

workloads on two GFS clusters comparable but not identi-
cal to those in Section 6.2. Cluster X is for research and
development while cluster Y is for production data process-
ing.

6.3.1 Methodology and Caveats
These results include only client originated requests so

that they reflect the workload generated by our applications
for the file system as a whole. They do not include inter-
server requests to carry out client requests or internal back-
ground activities, such as forwarded writes or rebalancing.

Statistics on I/O operations are based on information
heuristically reconstructed from actual RPC requests logged
by GFS servers. For example, GFS client code may break a
read into multiple RPCs to increase parallelism, from which
we infer the original read. Since our access patterns are
highly stylized, we expect any error to be in the noise. Ex-
plicit logging by applications might have provided slightly
more accurate data, but it is logistically impossible to re-
compile and restart thousands of running clients to do so
and cumbersome to collect the results from as many ma-
chines.

One should be careful not to overly generalize from our
workload. Since Google completely controls both GFS and
its applications, the applications tend to be tuned for GFS,
and conversely GFS is designed for these applications. Such
mutual influence may also exist between general applications

Real World Clusters
• Cluster A: used for research and development

• Typical task runs a few hours.
• Reads a few MBs to few TBs, transform data, and writes back to

cluster.
• Cluster B: used for production data processing

• Tasks much longer.
• Continuously generate and process multi-TB data sets.

37

Figure 3(a) shows the aggregate read rate for N clients
and its theoretical limit. The limit peaks at an aggregate of
125 MB/s when the 1 Gbps link between the two switches
is saturated, or 12.5 MB/s per client when its 100 Mbps
network interface gets saturated, whichever applies. The
observed read rate is 10 MB/s, or 80% of the per-client
limit, when just one client is reading. The aggregate read
rate reaches 94 MB/s, about 75% of the 125 MB/s link limit,
for 16 readers, or 6 MB/s per client. The efficiency drops
from 80% to 75% because as the number of readers increases,
so does the probability that multiple readers simultaneously
read from the same chunkserver.

6.1.2 Writes
N clients write simultaneously to N distinct files. Each

client writes 1 GB of data to a new file in a series of 1 MB
writes. The aggregate write rate and its theoretical limit are
shown in Figure 3(b). The limit plateaus at 67 MB/s be-
cause we need to write each byte to 3 of the 16 chunkservers,
each with a 12.5 MB/s input connection.

The write rate for one client is 6.3 MB/s, about half of the
limit. The main culprit for this is our network stack. It does
not interact very well with the pipelining scheme we use for
pushing data to chunk replicas. Delays in propagating data
from one replica to another reduce the overall write rate.

Aggregate write rate reaches 35 MB/s for 16 clients (or
2.2 MB/s per client), about half the theoretical limit. As in
the case of reads, it becomes more likely that multiple clients
write concurrently to the same chunkserver as the number
of clients increases. Moreover, collision is more likely for 16
writers than for 16 readers because each write involves three
different replicas.

Writes are slower than we would like. In practice this has
not been a major problem because even though it increases
the latencies as seen by individual clients, it does not sig-
nificantly affect the aggregate write bandwidth delivered by
the system to a large number of clients.

6.1.3 Record Appends
Figure 3(c) shows record append performance. N clients

append simultaneously to a single file. Performance is lim-
ited by the network bandwidth of the chunkservers that
store the last chunk of the file, independent of the num-
ber of clients. It starts at 6.0 MB/s for one client and drops
to 4.8 MB/s for 16 clients, mostly due to congestion and
variances in network transfer rates seen by different clients.

Our applications tend to produce multiple such files con-
currently. In other words, N clients append to M shared
files simultaneously where both N and M are in the dozens
or hundreds. Therefore, the chunkserver network congestion
in our experiment is not a significant issue in practice be-
cause a client can make progress on writing one file while
the chunkservers for another file are busy.

6.2 Real World Clusters
We now examine two clusters in use within Google that

are representative of several others like them. Cluster A is
used regularly for research and development by over a hun-
dred engineers. A typical task is initiated by a human user
and runs up to several hours. It reads through a few MBs
to a few TBs of data, transforms or analyzes the data, and
writes the results back to the cluster. Cluster B is primarily
used for production data processing. The tasks last much

Cluster A B

Chunkservers 342 227
Available disk space 72 TB 180 TB
Used disk space 55 TB 155 TB
Number of Files 735 k 737 k
Number of Dead files 22 k 232 k
Number of Chunks 992 k 1550 k
Metadata at chunkservers 13 GB 21 GB
Metadata at master 48 MB 60 MB

Table 2: Characteristics of two GFS clusters

longer and continuously generate and process multi-TB data
sets with only occasional human intervention. In both cases,
a single “task” consists of many processes on many machines
reading and writing many files simultaneously.

6.2.1 Storage
As shown by the first five entries in the table, both clusters

have hundreds of chunkservers, support many TBs of disk
space, and are fairly but not completely full. “Used space”
includes all chunk replicas. Virtually all files are replicated
three times. Therefore, the clusters store 18 TB and 52 TB
of file data respectively.

The two clusters have similar numbers of files, though B
has a larger proportion of dead files, namely files which were
deleted or replaced by a new version but whose storage have
not yet been reclaimed. It also has more chunks because its
files tend to be larger.

6.2.2 Metadata
The chunkservers in aggregate store tens of GBs of meta-

data, mostly the checksums for 64 KB blocks of user data.
The only other metadata kept at the chunkservers is the
chunk version number discussed in Section 4.5.

The metadata kept at the master is much smaller, only
tens of MBs, or about 100 bytes per file on average. This
agrees with our assumption that the size of the master’s
memory does not limit the system’s capacity in practice.
Most of the per-file metadata is the file names stored in a
prefix-compressed form. Other metadata includes file own-
ership and permissions, mapping from files to chunks, and
each chunk’s current version. In addition, for each chunk we
store the current replica locations and a reference count for
implementing copy-on-write.

Each individual server, both chunkservers and the master,
has only 50 to 100 MB of metadata. Therefore recovery is
fast: it takes only a few seconds to read this metadata from
disk before the server is able to answer queries. However, the
master is somewhat hobbled for a period – typically 30 to
60 seconds – until it has fetched chunk location information
from all chunkservers.

6.2.3 Read and Write Rates
Table 3 shows read and write rates for various time pe-

riods. Both clusters had been up for about one week when
these measurements were taken. (The clusters had been
restarted recently to upgrade to a new version of GFS.)

The average write rate was less than 30 MB/s since the
restart. When we took these measurements, B was in the
middle of a burst of write activity generating about 100 MB/s
of data, which produced a 300 MB/s network load because
writes are propagated to three replicas.

Results

38

0 5 10 15
Number of clients N

0

50

100

R
ea

d
ra

te
 (M

B
/s

)

Network limit

Aggregate read rate

(a) Reads

0 5 10 15
Number of clients N

0

20

40

60

W
ri

te
 ra

te
 (M

B
/s

)

Network limit

Aggregate write rate

(b) Writes

0 5 10 15
Number of clients N

0

5

10

A
pp

en
d

ra
te

 (M
B

/s
) Network limit

Aggregate append rate

(c) Record appends

Figure 3: Aggregate Throughputs. Top curves show theoretical limits imposed by our network topology. Bottom curves
show measured throughputs. They have error bars that show 95% confidence intervals, which are illegible in some cases
because of low variance in measurements.

Cluster A B

Read rate (last minute) 583 MB/s 380 MB/s
Read rate (last hour) 562 MB/s 384 MB/s
Read rate (since restart) 589 MB/s 49 MB/s
Write rate (last minute) 1 MB/s 101 MB/s
Write rate (last hour) 2 MB/s 117 MB/s
Write rate (since restart) 25 MB/s 13 MB/s
Master ops (last minute) 325 Ops/s 533 Ops/s
Master ops (last hour) 381 Ops/s 518 Ops/s
Master ops (since restart) 202 Ops/s 347 Ops/s

Table 3: Performance Metrics for Two GFS Clusters

The read rates were much higher than the write rates.
The total workload consists of more reads than writes as we
have assumed. Both clusters were in the middle of heavy
read activity. In particular, A had been sustaining a read
rate of 580 MB/s for the preceding week. Its network con-
figuration can support 750 MB/s, so it was using its re-
sources efficiently. Cluster B can support peak read rates of
1300 MB/s, but its applications were using just 380 MB/s.

6.2.4 Master Load
Table 3 also shows that the rate of operations sent to the

master was around 200 to 500 operations per second. The
master can easily keep up with this rate, and therefore is
not a bottleneck for these workloads.

In an earlier version of GFS, the master was occasionally
a bottleneck for some workloads. It spent most of its time
sequentially scanning through large directories (which con-
tained hundreds of thousands of files) looking for particular
files. We have since changed the master data structures to
allow efficient binary searches through the namespace. It
can now easily support many thousands of file accesses per
second. If necessary, we could speed it up further by placing
name lookup caches in front of the namespace data struc-
tures.

6.2.5 Recovery Time
After a chunkserver fails, some chunks will become under-

replicated and must be cloned to restore their replication
levels. The time it takes to restore all such chunks depends
on the amount of resources. In one experiment, we killed a
single chunkserver in cluster B. The chunkserver had about

15,000 chunks containing 600 GB of data. To limit the im-
pact on running applications and provide leeway for schedul-
ing decisions, our default parameters limit this cluster to
91 concurrent clonings (40% of the number of chunkservers)
where each clone operation is allowed to consume at most
6.25 MB/s (50 Mbps). All chunks were restored in 23.2 min-
utes, at an effective replication rate of 440 MB/s.

In another experiment, we killed two chunkservers each
with roughly 16,000 chunks and 660 GB of data. This double
failure reduced 266 chunks to having a single replica. These
266 chunks were cloned at a higher priority, and were all
restored to at least 2x replication within 2 minutes, thus
putting the cluster in a state where it could tolerate another
chunkserver failure without data loss.

6.3 Workload Breakdown
In this section, we present a detailed breakdown of the

workloads on two GFS clusters comparable but not identi-
cal to those in Section 6.2. Cluster X is for research and
development while cluster Y is for production data process-
ing.

6.3.1 Methodology and Caveats
These results include only client originated requests so

that they reflect the workload generated by our applications
for the file system as a whole. They do not include inter-
server requests to carry out client requests or internal back-
ground activities, such as forwarded writes or rebalancing.

Statistics on I/O operations are based on information
heuristically reconstructed from actual RPC requests logged
by GFS servers. For example, GFS client code may break a
read into multiple RPCs to increase parallelism, from which
we infer the original read. Since our access patterns are
highly stylized, we expect any error to be in the noise. Ex-
plicit logging by applications might have provided slightly
more accurate data, but it is logistically impossible to re-
compile and restart thousands of running clients to do so
and cumbersome to collect the results from as many ma-
chines.

One should be careful not to overly generalize from our
workload. Since Google completely controls both GFS and
its applications, the applications tend to be tuned for GFS,
and conversely GFS is designed for these applications. Such
mutual influence may also exist between general applications

Recovery

• Killed single chunkserver in cluster B (15,000 chunks and
600GB of data)
• All chunks restored 23.2 minutes.

• Killed two chunkservers – resulted in 266 chunks having
single replica
• Achieved 2x replication of these chunks in 2 minutes.

39

Related Work (1)
• Andrew File System (AFS) [Howard 1998, CMU]

• Provides weak consistency model.
• Reads and writes done on local cached copy.
• Writes committed to file on close.
• Server informs clients of updates to cached files.

• Not intended for large, shared data applications.
• Like GFS, provides location-independent namespace.

• Simplified version available for Linux.
• Descendent of Coda file system.

40

Related Work (2)
• Global File System (GFS) [Soltis 1996]

• Journaled file system
• Views storage as a Network Storage Pool.
• Concurrency control using locks.

• Can use a distributed lock manager

• Location-dependent namespace.

• GFS2 included in RedHat and CentOS.

41

Related Work (3)

• Similarities with other distributed file systems

• AFS also provides a location independent namespace.

• GFS places data in manner similar to xFS [Anderson 1995] and

Swift [Cabrera 1991] – for aggregate performance fault tolerance.

• Differences

• Frangipani [Chandramohan 1997] and Intermezzo provide caching.

• Frangipani, Intermezzo, Minnesota’s GFS, GPFS, use distributed

algorithms for consistency.

• Harp uses a primary copy scheme – gives stronger consistency

guarantees.

42

Related Work (3)

• GFS architecture resembles Network Attached Secured
Disk Architecture.
• Chunk servers act like network attached drives.

43

Conclusions

• GFS designed specifically for Google’s environment and

applications.

• Unique features:

• Large chunk size.

• Optimized for concurrent record-appends and long

sequential reads.

• Online repair mechanism to replace lost replicas.

• Delivers high throughput to many concurrent readers and

writers.

• Uses centralized master in scalable way.

• Works for Google … or does it?

44

Collosus
• 2010 – Google stopped using GFS
• Instead uses Collosus.

• GFS built for batch operations (MapReduce).
• Collosus built for real-time services.

• Chunk size is 1MB

• Includes multiple master nodes.

45

HDFS vs GFS
• HDFS = Hadoop Distributed File System

• Paper from 2010

• Built based on GFS
• Written in Java

• Similar architecture to GFS
• Master à NameNode
• Chunkserver à DataNode
• Chunk à Block

46

HDFS vs GFS (2)

Major differences

• Chunk size usually 64MB or 128MB by default
• But can be specified by application.

• Synchronized access to files.
• No concurrent writes.

• Can read a block while it is being written.

• Still uses single master node
• But also has a “backup master” – keeps copy of metadata in

memory

• Can be used as a read-only name node.

47

HDFS (Hadoop 2.0, 2012)
• Added automatic failover when NameNode fails.

• Need
• Mechanism to detect NameNode failure.
• Mechanism to elect new NameNode.

• These are provided by ZooKeeper.

48

References
• [1] http://www.tldp.org/LDP/sag/html/filesystems.html

49

