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What is Pipelining?

A way of speeding up execution of instructions

Key idea: 
overlap execution of multiple instructions



  

The Laundry Analogy
● Ann, Brian, Cathy, Dave 

each have one load of clothes 
to wash, dry, and fold

● Washer takes 30 minutes

● Dryer takes 30 minutes

● “Folder” takes 30 minutes

● “Stasher” takes 30 minutes
to put clothes into drawers
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If we do laundry sequentially...
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To Pipeline, We Overlap Tasks
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• Pipelining doesn’t help latency of 
single task, it helps throughput of 
entire workload

• Pipeline rate limited by slowest 
pipeline stage

• Multiple tasks operating 
simultaneously

• Potential speedup = Number pipe 
stages

• Unbalanced lengths of pipe stages 
reduces speedup

• Time to “fill” pipeline and time to 
“drain” it reduces speedup



  

Pipelining a Digital System
●

● Key idea: break big computation up into 
pieces

Separate each piece with a pipeline 
register

●

1ns

200ps 200ps 200ps 200ps 200ps

Pipeline
Register



  

Pipelining a Digital System

Why do this?  Because it's faster for repeated 
computations

1ns

Non-pipelined:
1 operation finishes
every 1ns 

200ps 200ps 200ps 200ps 200ps

Pipelined:
1 operation finishes
every 200ps 



  

Comments about pipelining

Pipelining increases throughput, but not latency
Answer available every 200ps, BUT

-A single computation still takes 1ns

Limitations:
-Computations must be divisible into stage size

-Pipeline registers add overhead 



  

● Suppose we need to perform multiply 
and add operation with a stream of 
numbers

●

● Each subinstruction is implemented in 
a segment within the pipeline. Each 
segment has one or two regsiters and 
a combinational circuit

● The sub operations performed in each 
segement are as follows

●

●

●



  

Example of Pipeline Processing



  

Content of Registers in Pipeline



  

Space Time Diagram of Pipeline



  

Speedup

Speedup from pipeline

    = Average instruction time unpiplined/Average instruction time 
pipelined

Consider a case for k-segment pipeline with a clock cycle time tp to 
execute n tasks. The first task T1 requires a time equal to k*tp to 
complete its operation since there are k segments in pipeline. The 
remaining n-1 tasks emerge from the pipe at a rate of one task per 
clock cycle and they will be completed in k+n-1 clock cycles.

Next, to concsider an unpipeline unit that performs the same 
operation and takes a time equal to tn to complete the task. The total 
time required fro n tasks is n*tn. The speed up of a pipeline 
processing over an equivalent non-pipeline processing is defined by 
the ratio



  

Speedup

● As the number of tasks increase n becomes much larger 
than k-1, and k+n-1 approaches 

the value of n. Under this condition, the speed up becomes
●

If we assume the the time taken to process the task is the 
same as in the pipeline and nonpipeline circuits, we will 
have   

● The speedup then reduces to numer of stages of pipeline 



  

Pipelining a Processor
• Recall the 5 steps in instruction execution:

1. Instruction Fetch (IF)
2. Instruction Decode and Register Read (ID)
3.Execution operation or calculate address (EX)
4.Memory access (MEM)
5.Write result into register (WB)

• Review: Single-Cycle Processor
– All 5 steps done in a single clock cycle
– Dedicated hardware required for each step



  

Review - Single-Cycle Processor



  

The Basic Pipeline For MIPS
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Basic Pipelined Processor



  

Single-Cycle vs. Pipelined 
Execution
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Comments about Pipelining

The good news
- Multiple instructions are being processed at same time

- This works because stages are isolated by registers

- Best case speedup of N

The bad news
- Instructions interfere with each other - hazards

Example: different instructions may need the same piece of  
 hardware (e.g., memory) in same clock cycle

 Example: instruction may require a result produced by an   
earlier instruction that is not yet complete



  

Pipeline Hazards

Limits to pipelining: Hazards prevent next 
instruction from executing during its designated 
clock cycle

Structural hazards: two different instructions use same h/w in same cycle 

Data hazards: Instruction depends on result of prior instruction still in the 
pipeline

Control hazards: Pipelining of branches & other instructions  that change the PC 
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