Pipeline: Introduction

These slides are derived from:
CSCE430/830 Computer
Architecture course by Prof. Hong
Jiang and Dave Patterson ©UCB

Some figures and tables have
been derived from :
Computer System Architecture by
M. Morris Mano

Pipelining Outline

Introduction
Defining Pipelining
Pipelining Instructions

Hazards
Structural hazards
Data Hazards
Control Hazards

What Is Pipelining?

A way of speeding up execution of instructions

Key idea:
overlap execution of multiple instructions

The Laundry Analogy
« Ann, Brian, Cathy, Dave 5{7)5@

each have one load of clothes
to wash, dry, and fold

 \WWasher takes 30 minutes

[=)

(-
* Dryer takes 30 minutes
e “Folder” takes 30 minutes
e “Stasher” takes 30 minutes ﬁ

to put clothes into drawers

S-S0 "WV

If we do laundry sequentially...

6 PM 7 8 9 10 11 12 1 2 AM

| | | | | | | | | | |
30'30'30'30'30'30'30 30/ 30/30!30 30'30'30'30'30I

Time

85 A

CoC o

SDQ=-0 X0V

To Pipeline, We Overlap Tasks

6 PM 7 8 9

10

12 1

11 2 AM

30 30 30 30 30 30 30

12

Time

Pipelining doesn't help latency of
single task, it helps throughput of
entire workload

Pipeline rate limited by slowest
pipeline stage

Multiple tasks operating
simultaneously

Potential speedup = Number pipe
stages

Unbalanced lengths of pipe stages
reduces speedup

Time to “fill” pipeline and time to
“drain” it reduces speedup

Pipelining a Digital System

« Key idea: break big computation up into
piegﬂ

1ns

Separate each piece with a pipeline
register

- o - o - o - o - »

© 200ps | 200ps | 200ps | 200ps | 200ps
|

Pipeline
Register

Pipelining a Digital System

Why do this? Because it's faster for repeated
computations

Non-pipelined:
1 operation finishes
every 1ns

1ns
Pipelined:
=) 1 operation finishes
every 200ps

200ps ~ 200ps 200ps 200ps 200ps

Comments about pipelining

Pipelining increases throughput, but not latency
Answer available every 200ps, BUT

-A single computation still takes 1ns

Limitations:
-Computations must be divisible into stage size

-Pipeline registers add overhead

Suppose we need to perform multiply
and add operation with a stream of
numbers

A;*B; + C; fori:i =1,2,3,...,7

Each subinstruction is implemented In
a segment within the pipeline. Each
segment has one or two regsiters and
a combinational circuit

The sub operations performed in each

seaement are as follows
R1 ("—A,', R2<"—B, Input A,' and B,‘

R3«<—R1*xR2, R4<«C; Multiply and input C;
R5«R3 + R4 Add C; to product

Example of Pipeline Processing

R’l 1 l'2
| |
! |
|]
|

R5

Content of Registers in Pipeline

F

Clock Segment 1 Segment 2 Segment 3
Pulse
Number R1 R2 R3 R4 RS

1 A B, — — —
2 Az Bz Al * Bl Cl -
3 A3 B3 Az*Bz Cz A]*Bl + Cl
4 As B, Az* B3 C3 A,*B, + Cz
5 As Bs A4*B4 C4 A3*B3 + C3
6 A(, Bﬁ As* Bs Cs As* B + C4
7 A, B7 A6*B6 C6 As*Bs + Cs
8 o — A7*B‘7 C7 AG*B¢, + C6
9 — — — S A7* B7 + C7

Space Time Diagram of Pipeline

Segment:

1

1 2 3 4 5 6 7 8 9
|l | |l 1| T
| | | 1| 75| T
T, T, T3 Ts Ts T
nlnl| n| |1 | T

» Clock cycles

Speedup

Speedup from pipeline

= Average instruction time unpiplined/Average instruction time
pipelined

Consider a case for k-segment pipeline with a clock cycle time tp to
execute n tasks. The first task T1 requires a time equal to k*tp to
complete its operation since there are k segments in pipeline. The
remaining n-1 tasks emerge from the pipe at a rate of one task per
clock cycle and they will be completed in k+n-1 clock cycles.

Next, to concsider an unpipeline unit that performs the same
operation and takes a time equal to tn to complete the task. The total
time required fro n tasks is n*tn. The speed up of a pipeline
processing over an equivalent non-pipeline processing is defined by
the ratio

nt,

S=(k+n-—1)tp

Speedup

* As the number of tasks increase n becomes much larger
than k-1, and k+n-1 approaches

the value of n. Under this condition, the speed up becomes

° S=-i:E
tp

If we assume the the time taken to process the task is the

same as in the pipeline and nonpipeline circuits, we will
have t, = ki,

* The speedup then reduces to numer of stages of pipeline

kt
S = —£2 = K
ty

Pipelining a Processor

o Recall the 5 steps in instruction execution:
1. Instruction Fetch (IF)
2. Instruction Decode and Register Read (ID)
3. Execution operation or calculate address (EX)
4. Memory access (MEM)
5. Write result into register (WB)

* Review: Single-Cycle Processor
— All 5 steps done in a single clock cycle
— Dedicated hardware required for each step

Review - Single-Cycle Processor

EX: Execute/l WB: Write back

address calculation

ID: Instruction decode/l
register file read

IF: Instruction fetch MEM: Memory access

|
|
|
|
|
|
|
I
|
|
|
I
|
]
|
|
|
I
|
|
|
|
I
|
|
|
Instruction +l
|
|
|
|
I
|
|
|
|
|
I
|
|
|
|
I
|
I

extend

|
|
|
|
|
|
|
|
|
|
|
— }
> Add L
I i
4 I Add
| result
| [shiftd
I\left 2
|
|
0 |
M o | Read Readil__1 >
;@ PC Address register 1 data 1 : Zerg
1 »-| Read I ALU ALy
register 2 Addressl
. | /0 result . Read 1
Registers [M datal M
> Write [Readl | u Datall
Instruction(} register data 2 | X Memory g
memory Writell] 1 0 0
—f= = -
data l Writed
| data
|
|
1? Signl |

S 7, e I

= 0Q=x0

The Basic Pipeline For MIPS

Ifetch

Reg

Ifetch

I

Reg

Ifetch

Ifetch

[Cycle lecIe 2|Cyc|e 3|Cyc|e 4|Cyc|e 5

[Cycle 6

|ICycle 7

Reg

Basic Pipelined Processor

A
. extend

Read
data

MEM/WB

IF/ID ID/EX EX/MEM
—
Add
4 —
Shift
left 2
| Address Read
S register 1 Read
] Read data 1
2 eal - -
. D P==>"| register 2 Zero o
Instruction £ Registers U ALU
memory — Write 9 Read N /6\ result Address
e data 2
register ata M Dat
: u ata
o | Write X memory
data | 1
_ Write
data
16 Sign 32

“xg =2°

Single-Cycle vs. Pipelined
Execution

Non-Pipelined
Instruction O 20 O 400 600 800 1000 1200 1400 1600 1800]
Order } } I I I I } »Time
Instruction JREG REG
1w $1, 100 ($0) ”F;‘;gh"’”l I ALU I MEM IWR
Instruction §REG REG
1w $2, 200($0) 800ps > ich IRDI ALU I MEM IWR ___
1w $3, 300($0) « 500 > ich 000
\/ ps I
< >
800ps‘/\
Pipelined
Instruction 0 200 400 600 800 1000 1200 1400 1600 .
Order 4 4 4 4 4 4 4 t —pTime
Instructi REG REG
1w $1, 100 ($0) ”F;Lt‘gh"’” o AW MEM S
Instruction REG REG
lw $2, 200($0) m Fetch Instruc:?n ALLFJ“EGl MEM WR _
v1w $3, 300($0) m Eioh = AW MEM IWR

< < < < < >
200ps 200ps 200ps 200ps 200ps

Comments about Pipelining

- Multiple instructions are being processed at same time
- This works because stages are isolated by registers

- Best case speedup of N

The bad news
- Instructions interfere with each other - hazards

Example: different instructions may need the same piece of
hardware (e.g., memory) in same clock cycle

Example: instruction may require a result produced by an
earlier instruction that is not yet complete

Pipeline Hazards

Limits to pipelining: Hazards prevent next
Instruction from executing during its designated
clock cycle

Structural hazards: two different instructions use same h/w in same cycle

Data hazards: Instruction depends on result of prior instruction still in the
pipeline

Control hazards: Pipelining of branches & other instructions that change the PC

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

