

Pipeline: Introduction

These slides are derived from:
CSCE430/830 Computer

Architecture course by Prof. Hong

Jiang and Dave Patterson ©UCB

Some figures and tables have
been derived from :

 Computer System Architecture by
M. Morris Mano

Pipelining Outline

Introduction
Defining Pipelining
Pipelining Instructions

Hazards
Structural hazards
Data Hazards
Control Hazards

What is Pipelining?

A way of speeding up execution of instructions

Key idea:
overlap execution of multiple instructions

The Laundry Analogy
● Ann, Brian, Cathy, Dave

each have one load of clothes
to wash, dry, and fold

● Washer takes 30 minutes

● Dryer takes 30 minutes

● “Folder” takes 30 minutes

● “Stasher” takes 30 minutes
to put clothes into drawers

A B C D

If we do laundry sequentially...

●

● 3030 30 3030 30 3030 30 30 3030 30 30 3030

6 PM 7 8
9

10 11 12 1

T
a
s
k

O
r
d
e
r

Time

A

B

C

D

2 AM

To Pipeline, We Overlap Tasks

Row 1 Row 2 Row 3 Row 4
0

2

4

6

8

10

12

12 2 AM6 PM 7 8 9 10 11 1

Time

T
a
s
k

O
r
d
e
r

30 30 30 30 30 30 30

A

C

D

B

• Pipelining doesn’t help latency of
single task, it helps throughput of
entire workload

• Pipeline rate limited by slowest
pipeline stage

• Multiple tasks operating
simultaneously

• Potential speedup = Number pipe
stages

• Unbalanced lengths of pipe stages
reduces speedup

• Time to “fill” pipeline and time to
“drain” it reduces speedup

Pipelining a Digital System
●

● Key idea: break big computation up into
pieces

Separate each piece with a pipeline
register

●

1ns

200ps 200ps 200ps 200ps 200ps

Pipeline
Register

Pipelining a Digital System

Why do this? Because it's faster for repeated
computations

1ns

Non-pipelined:
1 operation finishes
every 1ns

200ps 200ps 200ps 200ps 200ps

Pipelined:
1 operation finishes
every 200ps

Comments about pipelining

Pipelining increases throughput, but not latency
Answer available every 200ps, BUT

-A single computation still takes 1ns

Limitations:
-Computations must be divisible into stage size

-Pipeline registers add overhead

● Suppose we need to perform multiply
and add operation with a stream of
numbers

●

● Each subinstruction is implemented in
a segment within the pipeline. Each
segment has one or two regsiters and
a combinational circuit

● The sub operations performed in each
segement are as follows

●

●

●

Example of Pipeline Processing

Content of Registers in Pipeline

Space Time Diagram of Pipeline

Speedup

Speedup from pipeline

 = Average instruction time unpiplined/Average instruction time
pipelined

Consider a case for k-segment pipeline with a clock cycle time tp to
execute n tasks. The first task T1 requires a time equal to k*tp to
complete its operation since there are k segments in pipeline. The
remaining n-1 tasks emerge from the pipe at a rate of one task per
clock cycle and they will be completed in k+n-1 clock cycles.

Next, to concsider an unpipeline unit that performs the same
operation and takes a time equal to tn to complete the task. The total
time required fro n tasks is n*tn. The speed up of a pipeline
processing over an equivalent non-pipeline processing is defined by
the ratio

Speedup

● As the number of tasks increase n becomes much larger
than k-1, and k+n-1 approaches

the value of n. Under this condition, the speed up becomes
●

If we assume the the time taken to process the task is the
same as in the pipeline and nonpipeline circuits, we will
have

● The speedup then reduces to numer of stages of pipeline

Pipelining a Processor
• Recall the 5 steps in instruction execution:

1. Instruction Fetch (IF)
2. Instruction Decode and Register Read (ID)
3.Execution operation or calculate address (EX)
4.Memory access (MEM)
5.Write result into register (WB)

• Review: Single-Cycle Processor
– All 5 steps done in a single clock cycle
– Dedicated hardware required for each step

Review - Single-Cycle Processor

The Basic Pipeline For MIPS

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Cycle 1Cycle 2 Cycle 3Cycle 4 Cycle 6Cycle 7Cycle 5

I
n
s
t
r.

O
r
d
e
r

Basic Pipelined Processor

Single-Cycle vs. Pipelined
Execution

Non-Pipelined
0 200 400 600 800 1000 1200 1400 1600 1800

lw $1, 100($0) Instruction
Fetch

REG
RD

ALU REG
WR

MEM

lw $2, 200($0) Instruction
Fetch

REG
RD

ALU REG
WR

MEM

lw $3, 300($0) Instruction
Fetch

Time
Instruction
Order

800ps

800ps

800ps

Pipelined
0 200 400 600 800 1000 1200 1400 1600

lw $1, 100($0) Instruction
Fetch

REG
RD

ALU REG
WR

MEM

lw $2, 200($0)

lw $3, 300($0)

Time
Instruction
Order

200ps
Instruction
Fetch

REG
RD

ALU REG
WR

MEM

Instruction
Fetch

REG
RD

ALU REG
WR

MEM
200ps

200ps 200ps 200ps 200ps 200ps

Comments about Pipelining

The good news
- Multiple instructions are being processed at same time

- This works because stages are isolated by registers

- Best case speedup of N

The bad news
- Instructions interfere with each other - hazards

Example: different instructions may need the same piece of
 hardware (e.g., memory) in same clock cycle

 Example: instruction may require a result produced by an
earlier instruction that is not yet complete

Pipeline Hazards

Limits to pipelining: Hazards prevent next
instruction from executing during its designated
clock cycle

Structural hazards: two different instructions use same h/w in same cycle

Data hazards: Instruction depends on result of prior instruction still in the
pipeline

Control hazards: Pipelining of branches & other instructions that change the PC

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

