

The Role of Performance

 Performance is the key to understanding underlying
motivation for the hardware and its organization

 Measure, report, and summarize performance to enable users
to
 make intelligent choices
 see through the marketing hype!

 Why is some hardware better than others for different programs?
 What factors of system performance are hardware related?

(e.g., do we need a new machine, or a new operating system?)
 How does the machine's instruction set affect performance?

Performance

Airplane Passengers Range (mi) Speed (mph)

Boeing 737-100 101 630 598
Boeing 747 470 4150 610
BAC/Sud Concorde 132 4000 1350
Douglas DC-8-50146 8720 544

 How much faster is the Concorde compared to the
747?
 How much bigger is the Boeing 747 than the
Douglas DC-8?

 So which of these airplanes has the best performance?!

What do we measure?
Define performance….

 Response Time (elapsed time, latency):
 how long does it take for my job to run?
 how long does it take to execute (start to

 finish) my job?
 how long must I wait for the database query?

 Throughput:
 how many jobs can the machine run at once?
 what is the average execution rate?
 how much work is getting done?

 If we upgrade a machine with a new processor what do we

increase?

 If we add a new machine to the lab what do we increase?

Computer Performance:
TIME, TIME, TIME!!!

Individual user
concerns…

Systems manager
concerns…

 Elapsed Time
 counts everything (disk and memory accesses, waiting for I/O,

running other programs, etc.) from start to finish
 a useful number, but often not good for comparison purposes

 elapsed time = CPU time + wait time (I/O, other programs, etc.)

 CPU time
 doesn't count waiting for I/O or time spent running other

programs
 can be divided into user CPU time and system CPU time (OS

calls)
 CPU time = user CPU time + system CPU time
 elapsed time = user CPU time + system CPU time + wait time

 Our focus: user CPU time (CPU execution time or, simply,
execution time)
 time spent executing the lines of code that are in our program

Execution Time

 For some program running on machine X:

PerformanceX = 1 / Execution timeX

 X is n times faster than Y means:

PerformanceX / PerformanceY = n

Definition of Performance

Clock Cycles

 Instead of reporting execution time in seconds, we often use
cycles. In modern computers hardware events progress cycle
by cycle: in other words, each event, e.g., multiplication,
addition, etc., is a sequence of cycles

 Clock ticks indicate start and end of cycles:

 cycle time = time between ticks = seconds per cycle
 clock rate (frequency) = cycles per second (1 Hz. = 1

cycle/sec, 1 MHz. = 106 cycles/sec)
 Example: A 200 Mhz. clock has a

 cycle time

time

seconds

program

cycles

program

seconds

cycle

1

200 106
109 5 nanoseconds

cycle

ti
ck

ti
ck

Performance Equation I

 So, to improve performance one can either:
 reduce the number of cycles for a program, or
 reduce the clock cycle time, or, equivalently,
 increase the clock rate

seconds

program

cycles

program

seconds

cycle

CPU execution time CPU clock cycles Clock cycle time
for a program for a program=

equivalently

 Could assume that # of cycles = # of instructions

time1s
t i

ns
tr

uc
tio

n

2n
d

in
st

ru
ct

io
n

3r
d

in
st

ru
ct

io
n

4t
h

5t
h

6t
h ..
.

How many cycles are required
for a program?

 This assumption is incorrect! Because:
 Different instructions take different amounts of time (cycles)
 Why…?

 Multiplication takes more time than addition
 Floating point operations take longer than integer ones
 Accessing memory takes more time than accessing registers
 Important point: changing the cycle time often changes the

number of cycles required for various instructions because it
means changing the hardware design. More later…

time

How many cycles are required
for a program?

 Our favorite program runs in 10 seconds on computer A,
which has a 400Mhz. clock.

 We are trying to help a computer designer build a new
machine B, that will run this program in 6 seconds. The
designer can use new (or perhaps more expensive)
technology to substantially increase the clock rate, but has
informed us that this increase will affect the rest of the CPU
design, causing machine B to require 1.2 times as many clock
cycles as machine A for the same program.

 What clock rate should we tell the designer to target?

Example

A given program will require:
 some number of instructions (machine instructions)

 some number of cycles

 some number of seconds

We have a vocabulary that relates these quantities:
 cycle time (seconds per cycle)

 clock rate (cycles per second)

 (average) CPI (cycles per instruction)
 a floating point intensive application might have a higher average

CPI

 MIPS (millions of instructions per second)
 this would be higher for a program using simple instructions

Terminology

Performance Measure

 Performance is determined by execution time

 Do any of these other variables equal performance?
 # of cycles to execute program?
 # of instructions in program?
 # of cycles per second?
 average # of cycles per instruction?
 average # of instructions per second?

 Common pitfall : thinking one of the variables is indicative of
performance when it really isn’t

Performance Equation II
CPU execution time Instruction count average CPI Clock cycle time

for a program for a program

 Derive the above equation from Performance Equation I

=

 Suppose we have two implementations of the same
instruction set architecture (ISA). For some program:
 machine A has a clock cycle time of 10 ns. and a CPI of 2.0
 machine B has a clock cycle time of 20 ns. and a CPI of 1.2

 Which machine is faster for this program, and by how much?
 If two machines have the same ISA, which of our quantities (e.g.,

clock rate, CPI, execution time, # of instructions, MIPS) will always
be identical?

CPI Example I

 A compiler designer is trying to decide between two code
sequences for a particular machine.

 Based on the hardware implementation, there are three
different classes of instructions: Class A, Class B, and Class
C, and they require 1, 2 and 3 cycles (respectively).

 The first code sequence has 5 instructions:
 2 of A, 1 of B, and 2 of C

The second sequence has 6 instructions:
 4 of A, 1 of B, and 1 of C.

 Which sequence will be faster? How much? What is the CPI for
each sequence?

CPI Example II

 Two different compilers are being tested for a 500 MHz.
machine with three different classes of instructions: Class A,
Class B, and Class C, which require 1, 2 and 3 cycles
(respectively). Both compilers are used to produce code for
a large piece of software.

 Compiler 1 generates code with 5 billion Class A instructions,
1 billion Class B instructions, and 1 billion Class C
instructions.

 Compiler 2 generates code with 10 billion Class A
instructions, 1 billion Class B instructions, and 1 billion Class
C instructions.

 Which sequence will be faster according to MIPS?
 Which sequence will be faster according to execution time?

MIPS Example

 Performance best determined by running a real application
 use programs typical of expected workload
 or, typical of expected class of applications

e.g., compilers/editors, scientific applications, graphics,
etc.

 Small benchmarks
 nice for architects and designers
 easy to standardize
 can be abused!

 Benchmark suites
 Perfect Club: set of application codes
 Livermore Loops: 24 loop kernels
 Linpack: linear algebra package
 SPEC: mix of code from industry organization

Benchmarks

SPEC (System Performance
Evaluation Corporation)
 Sponsored by industry but independent and self-managed –

trusted by code developers and machine vendors
 Clear guides for testing, see www.spec.org
 Regular updates (benchmarks are dropped and new ones added

periodically according to relevance)
 Specialized benchmarks for particular classes of applications
 Can still be abused…, by selective optimization!

http://www.spec.org/

SPEC History
 First Round: SPEC CPU89

 10 programs yielding a single number
 Second Round: SPEC CPU92

 SPEC CINT92 (6 integer programs) and SPEC CFP92 (14 floating point
programs)

 compiler flags can be set differently for different programs
 Third Round: SPEC CPU95

 new set of programs: SPEC CINT95 (8 integer programs) and SPEC CFP95
(10 floating point)

 single flag setting for all programs
 Fourth Round: SPEC CPU2000

 new set of programs: SPEC CINT2000 (12 integer programs) and SPEC
CFP2000 (14 floating point)

 single flag setting for all programs
 programs in C, C++, Fortran 77, and Fortran 90

CINT2000 (Integer component
of SPEC CPU2000)
Program Language What It Is
164.gzip C Compression
175.vpr C FPGA Circuit Placement and Routing
176.gcc C C Programming Language Compiler
181.mcf C Combinatorial Optimization
186.crafty C Game Playing: Chess
197.parser C Word Processing
252.eon C++ Computer Visualization
253.perlbmk C PERL Programming Language
254.gap C Group Theory, Interpreter
255.vortex C Object-oriented Database
256.bzip2 C Compression
300.twolf C Place and Route Simulator

CFP2000 (Floating point
component of SPEC CPU2000)

Program Language What It Is
168.wupwise Fortran 77 Physics / Quantum Chromodynamics
171.swim Fortran 77 Shallow Water Modeling
172.mgrid Fortran 77 Multi-grid Solver: 3D Potential Field
173.applu Fortran 77 Parabolic / Elliptic Differential Equations
177.mesa C 3-D Graphics Library
178.galgel Fortran 90 Computational Fluid Dynamics
179.art C Image Recognition / Neural Networks
183.equake C Seismic Wave Propagation Simulation
187.facerec Fortran 90 Image Processing: Face Recognition
188.ammp C Computational Chemistry
189.lucas Fortran 90 Number Theory / Primality Testing
191.fma3d Fortran 90 Finite-element Crash Simulation
200.sixtrack Fortran 77 High Energy Physics Accelerator Design
301.apsi Fortran 77 Meteorology: Pollutant Distribution

SPEC CPU2000 reporting
 Refer SPEC website www.spec.org for documentation
 Single number result – geometric mean of normalized ratios for

each code in the suite
 Report precise description of machine
 Report compiler flag setting

http://www.spec.org/

Specialized SPEC Benchmarks
 I/O
 Network
 Graphics
 Java
 Web server
 Transaction processing (databases)

Amdahl's Law
 Execution Time After Improvement =
 Execution Time Unaffected + (Execution Time Affected / Rate of

Improvement)

 Example:
 Suppose a program runs in 100 seconds on a machine, with

multiply responsible for 80 seconds of this time.
 How much do we have to improve the speed of multiplication if we want the program

to run 4 times faster?
 How about making it 5 times faster?

 Design Principle: Make the common case fast

Improved part of code

 Suppose we enhance a machine making all floating-point
instructions run five times faster. The execution time of
some benchmark before the floating-point enhancement is 10
seconds.

 What will the speedup be if half of the 10 seconds is spent executing
floating-point instructions?

 We are looking for a benchmark to show off the new floating-
point unit described above, and want the overall benchmark
to show a speedup of 3. One benchmark we are considering
runs for 100 seconds with the old floating-point hardware.

 How much of the execution time would floating-point instructions have

to account for in this program in order to yield our desired speedup on
this benchmark?

Examples

 Performance is specific to a particular program
 total execution time is a consistent summary of performance

 For a given architecture performance increases come from:
 increases in clock rate (without adverse CPI affects)
 improvements in processor organization that lower CPI
 compiler enhancements that lower CPI and/or instruction count

 Pitfall: expecting improvement in one aspect of a machine’s

performance to affect the total performance

 You should not always believe everything you read! Read

carefully! See newspaper articles, e.g., Exercise 2.37!!

Summary

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

