
 4/5/99 CS152 / Kubiatowicz

Lec17.1

Memory Systems

Prepared by: Professor David A. Patterson

Edited and presented by : Prof. Kurt Keutzer

 Lec17.2

° The Five Classic Components of a Computer

° Today’s Topics:
• SRAM Memory Technology

• DRAM Memory Technology

• Memory Organization

The Big Picture: Where are We Now?

Control

Datapath

Memory

Processor

Input

Output

 Lec17.3

Technology Trends

 DRAM

Year Size Cycle Time

1980 64 Kb 250 ns

1983 256 Kb 220 ns

1986 1 Mb 190 ns

1989 4 Mb 165 ns

1992 16 Mb 145 ns

1995 64 Mb 120 ns

 Capacity Speed (latency)

Logic: 2x in 3 years 2x in 3 years

DRAM: 4x in 3 years 2x in 10 years

Disk: 4x in 3 years 2x in 10 years

1000:1! 2:1!

 Lec17.4

µProc
60%/yr.
(2X/1.5yr)

DRAM
9%/yr.
(2X/10 yrs)1

10

100

1000

1
9
8

01
9
8

1 1
9
8

31
9
8

41
9
8

5 1
9
8

61
9
8

71
9
8

81
9
8

91
9
9

01
9
9

1 1
9
9

21
9
9

31
9

9
41
9
9

51
9
9

61
9
9

71
9
9

8 1
9
9

92
0
0

0

DRAM

CPU
1
9
8

2

Processor-Memory
Performance Gap:
(grows 50% / year)

P
er

fo
rm

a n
ce

Time

“Moore’s Law”

Processor-DRAM Memory Gap (latency)

Who Cares About the Memory Hierarchy?

 Lec17.5

Today’s Situation: Microprocessor

° Rely on caches to bridge gap

° Microprocessor-DRAM performance gap
• time of a full cache miss in instructions executed

1st Alpha (7000): 340 ns/5.0 ns = 68 clks x 2 or 136 instructions

2nd Alpha (8400): 266 ns/3.3 ns = 80 clks x 4 or 320 instructions

3rd Alpha (t.b.d.): 180 ns/1.7 ns =108 clks x 6 or 648 instructions

• 1/2X latency x 3X clock rate x 3X Instr/clock 5X

 Lec17.6

Impact on Performance

° Suppose a processor executes at
• Clock Rate = 200 MHz (5 ns per cycle)

• CPI = 1.1

• 50% arith/logic, 30% ld/st, 20% control

° Suppose that 10% of memory
operations get 50 cycle
miss penalty

° CPI = ideal CPI + average stalls per instruction =
1.1(cyc) +(0.30 (datamops/ins)

x 0.10 (miss/datamop) x 50 (cycle/miss))
= 1.1 cycle + 1.5 cycle = 2. 6

° 58 % of the time the processor is stalled waiting
for memory!

° a 1% instruction miss rate would add an additional
0.5 cycles to the CPI!

DataMiss
(1.6)
49%

Ideal CPI
(1.1)
35%

Inst Miss
(0.5)
16%

 Lec17.7

The Goal: illusion of large, fast, cheap
memory

° Fact: Large memories are slow, fast memories are
small

° How do we create a memory that is large, cheap and
fast (most of the time)?

• Hierarchy

• Parallelism

 Lec17.8

An Expanded View of the Memory System

Control

Datapath

Memory

Processor

M
em

ory

Memory

Memory

M
em

ory

Fastest Slowest

Smallest Biggest

Highest Lowest

Speed:

Size:

Cost:

 Lec17.9

Why hierarchy
works

° The Principle of Locality:
• Program access a relatively small portion of the address space at

any instant of time.

Address Space0 2^n - 1

Probability
of reference

 Lec17.10

Memory Hierarchy: How Does it Work?

° Temporal Locality (Locality in Time):
=> Keep most recently accessed data items closer to the processor

° Spatial Locality (Locality in Space):
=> Move blocks consists of contiguous words to the upper levels

Lower Level
MemoryUpper Level

Memory
To Processor

From Processor
Blk X

Blk Y

 Lec17.11

Memory Hierarchy: Terminology

° Hit: data appears in some block in the upper level
(example: Block X)

• Hit Rate: the fraction of memory access found in the upper level

• Hit Time: Time to access the upper level which consists of

RAM access time + Time to determine hit/miss

° Miss: data needs to be retrieve from a block in the
lower level (Block Y)

• Miss Rate = 1 - (Hit Rate)

• Miss Penalty: Time to replace a block in the upper level +

Time to deliver the block the processor

° Hit Time << Miss Penalty
Lower Level

MemoryUpper Level
Memory

To Processor

From Processor
Blk X

Blk Y

 Lec17.12

Memory Hierarchy of a Modern Computer System

° By taking advantage of the principle of locality:
• Present the user with as much memory as is available in the

cheapest technology.

• Provide access at the speed offered by the fastest technology.

Control

Datapath

Secondary
Storage
(Disk)

Processor

R
egisters

Main
Memory
(DRAM)

Second
Level
Cache

(SRAM)

O
n

-C
h

ip
C

ach
e

1s 10,000,000s

 (10s ms)

Speed (ns): 10s 100s

100s GsSize (bytes): Ks Ms

Tertiary
Storage
(Tape)

10,000,000,000s
 (10s sec)

Ts

 Lec17.13

How is the hierarchy
managed?

° Registers <-> Memory
• by compiler (programmer?)

° cache <-> memory
• by the hardware

° memory <-> disks
• by the hardware and operating system (virtual memory)

• by the programmer (files)

 Lec17.14

Memory Hierarchy Technology
° Random Access:

• “Random” is good: access time is the same for all locations

• DRAM: Dynamic Random Access Memory

- High density, low power, cheap, slow

- Dynamic: need to be “refreshed” regularly

• SRAM: Static Random Access Memory

- Low density, high power, expensive, fast

- Static: content will last “forever”(until lose power)

° “Non-so-random” Access Technology:
• Access time varies from location to location and from time to time

• Examples: Disk, CDROM

° Sequential Access Technology: access time linear in
location (e.g.,Tape)

° The next two lectures will concentrate on random
access technology
• The Main Memory: DRAMs + Caches: SRAMs

 Lec17.15

Main Memory Background

° Performance of Main Memory:
• Latency: Cache Miss Penalty

- Access Time: time between request and word arrives

- Cycle Time: time between requests

• Bandwidth: I/O & Large Block Miss Penalty (L2)

° Main Memory is DRAM : Dynamic Random Access Memory
• Dynamic since needs to be refreshed periodically (8 ms)

• Addresses divided into 2 halves (Memory as a 2D matrix):

- RAS or Row Access Strobe

- CAS or Column Access Strobe

° Cache uses SRAM : Static Random Access Memory
• No refresh (6 transistors/bit vs. 1 transistor)

Size: DRAM/SRAM 4-8
Cost/Cycle time: SRAM/DRAM 8-16

 Lec17.16

Random Access Memory (RAM) Technology

° Why do computer designers need to know about RAM
technology?

• Processor performance is usually limited by memory bandwidth

• As IC densities increase, lots of memory will fit on processor chip

- Tailor on-chip memory to specific needs

- Instruction cache

- Data cache

- Write buffer

° What makes RAM different from a bunch of flip-flops?
• Density: RAM is much denser

 Lec17.17

Static RAM
Cell

6-Transistor SRAM Cell

bit bit

word
(row select)

bit bit

word

° Write:
1. Drive bit lines (bit=1, bit=0)

2.. Select row

° Read:
1. Precharge bit and bit to Vdd or Vdd/2 => make sure equal!

2.. Select row

3. Cell pulls one line low

4. Sense amp on column detects difference between bit and bit

replaced with pullup
to save area

10

0 1

 Lec17.18

Typical SRAM Organization: 16-word x 4-bit

SRAM
Cell

SRAM
Cell

SRAM
Cell

SRAM
Cell

SRAM
Cell

SRAM
Cell

SRAM
Cell

SRAM
Cell

SRAM
Cell

SRAM
Cell

SRAM
Cell

SRAM
Cell

- +Sense Amp - +Sense Amp - +Sense Amp - +Sense Amp

: : : :

Word 0

Word 1

Word 15

Dout 0Dout 1Dout 2Dout 3

- +
Wr Driver &
Precharger - +

Wr Driver &
Precharger - +

Wr Driver &
Precharger - +

Wr Driver &
Precharger

A
d

dress D
ecod

er

WrEn
Precharge

Din 0Din 1Din 2Din 3

A0

A1

A2

A3

Q: Which is longer:
word line or

bit line?

 Lec17.19

° Write Enable is usually active low (WE_L)

° Din and Dout are combined to save pins:
• A new control signal, output enable (OE_L) is needed

• WE_L is asserted (Low), OE_L is disasserted (High)

- D serves as the data input pin

• WE_L is disasserted (High), OE_L is asserted (Low)

- D is the data output pin

• Both WE_L and OE_L are asserted:

- Result is unknown. Don’t do that!!!

° Although could change VHDL to do what desire, must do
the best with what you’ve got (vs. what you need)

A

DOE_L

2 N words
x M bit
SRAM

N

M

WE_L

Logic Diagram of a Typical SRAM

 Lec17.20

Typical SRAM Timing

Write Timing:

D

Read Timing:

WE_L

A

Write
Hold Time

Write Setup Time

A

DOE_L

2 N words
x M bit
SRAM

N

M

WE_L

Data In

Write Address

OE_L

High Z

Read Address

Junk

Read Access
Time

Data Out

Read Access
Time

Data Out

Read Address

 Lec17.21

Problems with
SRAM

° Six transistors use up a lot of area

° Consider a “Zero” is stored in the cell:
• Transistor N1 will try to pull “bit” to 0

• Transistor P2 will try to pull “bit bar” to 1

° But bit lines are precharged to high: Are P1 and P2
necessary?

bit = 1 bit = 0

Select = 1

On Off

Off On

N1 N2

P1 P2

On
On

 Lec17.22

1-Transistor Memory Cell (DRAM)

° Write:
• 1. Drive bit line

• 2.. Select row

° Read:
• 1. Precharge bit line to Vdd

• 2.. Select row

• 3. Cell and bit line share charges

- Very small voltage changes on the bit line

• 4. Sense (fancy sense amp)

- Can detect changes of ~1 million electrons

• 5. Write: restore the value

° Refresh
• 1. Just do a dummy read to every cell.

row select

bit

 Lec17.23

Classical DRAM Organization
(square)

r
o
w

d
e
c
o
d
e
r

row
address

Column Selector &
 I/O Circuits Column

Address

data

RAM Cell
 Array

word (row) select

bit (data) lines

° Row and Column Address
together:

• Select 1 bit a time

Each intersection represents
a 1-T DRAM Cell

 Lec17.24

DRAM logical organization (4
Mbit)

° Square root of bits per RAS/CAS

Column Decoder

Sense Amps & I/O

Memory Array
(2,048 x 2,048)

A0…A10

…

11 D

Q

Word Line
Storage
Cell

 Lec17.25

Block
Row Dec.

9 : 512

Row
Block

Row Dec.
9 : 512

Column Address

… Block
Row Dec.

9 : 512

Block
Row Dec.

9 : 512

…

Block 0 Block 3…

I/O
I/O

I/O
I/O

I/O
I/O

I/O
I/O

D

Q

Address

2

8 I/Os

8 I/Os

DRAM physical organization (4
Mbit)

 Lec17.26

DRAM
2^n x 1
chip

DRAM
Controller

address

Memory
Timing
Controller Bus Drivers

n

n/2

w

Tc = Tcycle + Tcontroller + Tdriver

Memory Systems

 Lec17.27

A
D

OE_L

256K x 8
DRAM9 8

WE_L

° Control Signals (RAS_L, CAS_L, WE_L, OE_L) are all
active low

° Din and Dout are combined (D):
• WE_L is asserted (Low), OE_L is disasserted (High)

- D serves as the data input pin

• WE_L is disasserted (High), OE_L is asserted (Low)

- D is the data output pin

° Row and column addresses share the same pins (A)
• RAS_L goes low: Pins A are latched in as row address

• CAS_L goes low: Pins A are latched in as column address

• RAS/CAS edge-sensitive

CAS_LRAS_L

Logic Diagram of a Typical DRAM

 Lec17.28

° tRAC: minimum time from RAS line falling to the
valid data output.

• Quoted as the speed of a DRAM

• A fast 4Mb DRAM tRAC = 60 ns

° tRC: minimum time from the start of one row
access to the start of the next.

• tRC = 110 ns for a 4Mbit DRAM with a tRAC of 60 ns

° tCAC: minimum time from CAS line falling to
valid data output.

• 15 ns for a 4Mbit DRAM with a tRAC of 60 ns

° tPC: minimum time from the start of one column
access to the start of the next.

• 35 ns for a 4Mbit DRAM with a tRAC of 60 ns

Key DRAM Timing Parameters

 Lec17.29

° A 60 ns (tRAC) DRAM can
• perform a row access only every 110 ns (tRC)

• perform column access (tCAC) in 15 ns, but time between column
accesses is at least 35 ns (tPC).

- In practice, external address delays and turning around
buses make it 40 to 50 ns

° These times do not include the time to drive the
addresses off the microprocessor nor the memory
controller overhead.

• Drive parallel DRAMs, external memory controller, bus to turn
around, SIMM module, pins…

• 180 ns to 250 ns latency from processor to memory is good for a
“60 ns” (tRAC) DRAM

DRAM Performance

 Lec17.30

A
D

OE_L

256K x 8
DRAM9 8

WE_LCAS_LRAS_L

WE_L

A Row Address

OE_L

Junk

WR Access Time WR Access Time

CAS_L

RAS_L

Col Address Row Address JunkCol Address

D Junk JunkData In Data In Junk

DRAM WR Cycle Time

Early Wr Cycle: WE_L asserted before CAS_L Late Wr Cycle: WE_L asserted after CAS_L

° Every DRAM access
begins at:

• The assertion of the RAS_L

• 2 ways to write:
early or late v. CAS

DRAM Write Timing

 Lec17.31

A
D

OE_L

256K x 8
DRAM9 8

WE_LCAS_LRAS_L

OE_L

A Row Address

WE_L

Junk

Read Access
Time

Output Enable
Delay

CAS_L

RAS_L

Col Address Row Address JunkCol Address

D High Z Data Out

DRAM Read Cycle Time

Early Read Cycle: OE_L asserted before CAS_L Late Read Cycle: OE_L asserted after CAS_L

° Every DRAM access
begins at:

• The assertion of the RAS_L

• 2 ways to read:
early or late v. CAS

Junk Data Out High Z

DRAM Read Timing

 Lec17.32

° Simple:
• CPU, Cache, Bus, Memory

same width
(32 bits)

° Interleaved:
• CPU, Cache, Bus 1 word:

Memory N Modules
(4 Modules); example is
word interleaved

° Wide:
• CPU/Mux 1 word;

Mux/Cache, Bus,
Memory N words
(Alpha: 64 bits & 256
bits)

Main Memory Performance

 Lec17.33

° DRAM (Read/Write) Cycle Time >> DRAM (Read/Write)
Access Time

• 2:1; why?

° DRAM (Read/Write) Cycle Time :
• How frequent can you initiate an access?

• Analogy: A little kid can only ask his father for money on Saturday

° DRAM (Read/Write) Access Time:
• How quickly will you get what you want once you initiate an access?

• Analogy: As soon as he asks, his father will give him the money

° DRAM Bandwidth Limitation analogy:
• What happens if he runs out of money on Wednesday?

TimeAccess Time

Cycle Time

Main Memory Performance

 Lec17.34

Access Pattern without Interleaving:

Start Access for D1

CPU Memory

Start Access for D2

D1 available

Access Pattern with 4-way Interleaving:

A
cc

es
s

B
an

k
 0

Access Bank 1

Access Bank 2

Access Bank 3

We can Access Bank 0 again

CPU

Memory
Bank 1

Memory
Bank 0

Memory
Bank 3

Memory
Bank 2

Increasing Bandwidth -
Interleaving

 Lec17.35

° Timing model
• 1 to send address,

• 4 for access time, 10 cycle time, 1 to send data

• Cache Block is 4 words

° Simple M.P. = 4 x (1+10+1) = 48
° Wide M.P. = 1 + 10 + 1 = 12
° Interleaved M.P. = 1+10+1 + 3 =15

address

Bank 0

0
4
8

12

address

Bank 1

1
5
9

13

address

Bank 2

2
6

10
14

address

Bank 3

3
7

11
15

Main Memory Performance

 Lec17.36

° How many banks?
number banks number clocks to access word in bank

• For sequential accesses, otherwise will return to original bank before
it has next word ready

° Increasing DRAM => fewer chips => harder to have
banks

• Growth bits/chip DRAM : 50%-60%/yr

• Nathan Myrvold M/S: mature software growth
(33%/yr for NT) growth MB/$ of DRAM (25%-30%/yr)

Independent Memory Banks

 Lec17.37

Fewer DRAMs/System over Time
M

in
im

u
m

 P
C

 M
e

m
o

r y
 S

iz
e

DRAM Generation
‘86 ‘89 ‘92 ‘96 ‘99 ‘02
1 Mb 4 Mb 16 Mb 64 Mb 256 Mb 1 Gb

4 MB

8 MB

16 MB

32 MB

64 MB

128 MB

256 MB

32 8

16 4

8 2

4 1

8 2

4 1

8 2

Memory per
System growth
@ 25%-30% / year

Memory per
DRAM growth
@ 60% / year

(from Pete
MacWilliams,
Intel)

 Lec17.38

Page Mode DRAM:
Motivation

° Regular DRAM Organization:
• N rows x N column x M-bit

• Read & Write M-bit at a time

• Each M-bit access requires
a RAS / CAS cycle

° Fast Page Mode DRAM
• N x M “register” to save a row

A Row Address Junk

CAS_L

RAS_L

Col Address Row Address JunkCol Address

1st M-bit Access 2nd M-bit Access

N
 r

ow
s

N cols

DRAM

M bits

Row
Address

Column
Address

M-bit Output

 Lec17.39

Fast Page Mode
Operation

° Fast Page Mode DRAM
• N x M “SRAM” to save a row

° After a row is read into the
register

• Only CAS is needed to access
other M-bit blocks on that row

• RAS_L remains asserted while
CAS_L is toggled

A Row Address

CAS_L

RAS_L

Col Address Col Address

1st M-bit Access

N
 r

ow
s

N cols

DRAM

Column
Address

M-bit Output
M bits

N x M “SRAM”

Row
Address

Col Address Col Address

2nd M-bit 3rd M-bit 4th M-bit

 Lec17.40

Standards pinout, package, binary compatibility,
refresh rate, IEEE 754, I/O bus
capacity, ...

Sources Multiple Single

Figures 1) capacity, 1a) $/bit 1) SPEC speed
of Merit 2) BW, 3) latency 2) cost

Improve 1) 60%, 1a) 25%, 1) 60%,
Rate/year 2) 20%, 3) 7% 2) little change

DRAM v. Desktop Microprocessors Cultures

 Lec17.41

° Reduce cell size 2.5, increase die size 1.5

° Sell 10% of a single DRAM generation
• 6.25 billion DRAMs sold in 1996

° 3 phases: engineering samples, first customer
ship(FCS), mass production

• Fastest to FCS, mass production wins share

° Die size, testing time, yield => profit
• Yield >> 60%

(redundant rows/columns to repair flaws)

DRAM Design Goals

 Lec17.42

° DRAMs: capacity +60%/yr, cost –30%/yr
• 2.5X cells/area, 1.5X die size in 3 years

° ‘97 DRAM fab line costs $1B to $2B
• DRAM only: density, leakage v. speed

° Rely on increasing no. of computers & memory per
computer (60% market)

• SIMM or DIMM is replaceable unit
=> computers use any generation DRAM

° Commodity, second source industry
=> high volume, low profit, conservative

• Little organization innovation in 20 years
 page mode, EDO, Synch DRAM

° Order of importance: 1) Cost/bit 1a) Capacity
• RAMBUS: 10X BW, +30% cost => little impact

DRAM History

 Lec17.43

° Commodity, second source industry
 high volume, low profit, conservative

• Little organization innovation (vs. processors)
in 20 years: page mode, EDO, Synch DRAM

° DRAM industry at a crossroads:
• Fewer DRAMs per computer over time

- Growth bits/chip DRAM : 50%-60%/yr

- Nathan Myrvold M/S: mature software growth
(33%/yr for NT) growth MB/$ of DRAM (25%-30%/yr)

• Starting to question buying larger DRAMs?

Today’s Situation: DRAM

 Lec17.44

DRAM Revenue per Quarter

$0

$5,000

$10,000

$15,000

$20,000

1Q
94

2Q
94

3Q
94

4Q
94

1Q
95

2Q
95

3Q
95

4Q
95

1Q
96

2Q
96

3Q
96

4Q
96

1Q
97

(M
iil

lio
n s

) $16B

$7B

• Intel: 30%/year since 1987; 1/3 income profit

Today’s Situation: DRAM

 Lec17.45

° Two Different Types of Locality:
• Temporal Locality (Locality in Time): If an item is referenced, it will

tend to be referenced again soon.

• Spatial Locality (Locality in Space): If an item is referenced, items
whose addresses are close by tend to be referenced soon.

° By taking advantage of the principle of locality:
• Present the user with as much memory as is available in the

cheapest technology.

• Provide access at the speed offered by the fastest technology.

° DRAM is slow but cheap and dense:
• Good choice for presenting the user with a BIG memory system

° SRAM is fast but expensive and not very dense:
• Good choice for providing the user FAST access time.

Summary:

 Lec17.46

 Processor % Area %Transistors

(cost) (power)

° Alpha 21164 37% 77%

° StrongArm SA110 61% 94%

° Pentium Pro 64% 88%
• 2 dies per package: Proc/I$/D$ + L2$

° Caches have no inherent value,
only try to close performance gap

Summary: Processor-Memory Performance Gap “Tax”

 Lec17.47

Upper Level

Lower Level

faster

Larger

Recall: Levels of the Memory
Hierarchy

Processor

Cache

Memory

Disk

Tape

Instr. Operands

Blocks

Pages

Files

 Lec17.48

• Time = IC x CT x (ideal CPI + memory stalls/inst)

• memory stalls/instruction =
Average accesses/inst x Miss Rate x Miss Penalty =
(Average IFETCH/inst x MissRateInst x Miss PenaltyInst) +
(Average Data/inst x MissRateData x Miss PenaltyData)

• Assumes that ideal CPI includes Hit Times.

• Average Memory Access time =
Hit Time + (Miss Rate x Miss Penalty)

Cache performance equations:

 Lec17.49

Impact on Performance

° Suppose a processor executes at
• Clock Rate = 200 MHz (5 ns per cycle)

• CPI = 1.1

• 50% arith/logic, 30% ld/st, 20% control

° Suppose that 10% of memory
operations get 50 cycle miss penalty

° Suppose that 1% of instructions get same miss penalty

° CPI = ideal CPI + average stalls per instruction
1.1(cycles/ins) +

[0.30 (DataMops/ins)
x 0.10 (miss/DataMop) x 50 (cycle/miss)] +
[1 (InstMop/ins)
x 0.01 (miss/InstMop) x 50 (cycle/miss)]
= (1.1 + 1.5 + .5) cycle/ins = 3.1

° 58% of the time the proc is stalled waiting for memory!

Ideal CPI 1.1
Data Miss 1.5
Inst Miss 0.5

DataMis
s

(1.6)
49%

Ideal
CPI
(1.1)
35%

Inst
Miss
(0.5)
16%

 Lec17.50

Processor

$

MEM

Memory

reference stream
<op,addr>, <op,addr>,<op,addr>,<op,addr>, . . .

op: i-fetch, read, write

Optimize the memory system organization
to minimize the average memory access time
for typical workloads

Workload or
Benchmark
programs

The Art of Memory System
Design

 Lec17.51

Example: 1 KB Direct Mapped Cache with 32 B
Blocks

° For a 2 ** N byte cache:
• The uppermost (32 - N) bits are always the Cache Tag

• The lowest M bits are the Byte Select (Block Size = 2 ** M)

Cache Index

0

1

2

3

:

 Cache Data

Byte 0

0431

:

Cache Tag Example: 0x50

Ex: 0x01

0x50

Stored as part
of the cache “state”

Valid Bit

:

31

Byte 1Byte 31 :

Byte 32Byte 33Byte 63 :
Byte 992Byte 1023 :

 Cache Tag

Byte Select

Ex: 0x00

9
Block address

 Lec17.52

Block Size Tradeoff

° In general, larger block size take advantage of spatial
locality BUT:

• Larger block size means larger miss penalty:

- Takes longer time to fill up the block

• If block size is too big relative to cache size, miss rate will go up

- Too few cache blocks

° In general, Average Access Time:
= Hit Time x (1 - Miss Rate) + Miss Penalty x Miss Rate

Miss
Penalty

Block Size

Miss
Rate Exploits Spatial Locality

Fewer blocks:
compromises
temporal locality

Average
Access

Time

Increased Miss Penalty
& Miss Rate

Block Size Block Size

 Lec17.53

Extreme Example: single
line

° Cache Size = 4 bytes Block Size = 4 bytes
• Only ONE entry in the cache

° If an item is accessed, likely that it will be accessed
again soon

• But it is unlikely that it will be accessed again immediately!!!

• The next access will likely to be a miss again

- Continually loading data into the cache but
discard (force out) them before they are used again

- Worst nightmare of a cache designer: Ping Pong Effect

° Conflict Misses are misses caused by:
• Different memory locations mapped to the same cache index

- Solution 1: make the cache size bigger

- Solution 2: Multiple entries for the same Cache Index

0

 Cache DataValid Bit

Byte 0Byte 1Byte 3

 Cache Tag

Byte 2

 Lec17.54

Another Extreme Example: Fully Associative

° Fully Associative Cache
• Forget about the Cache Index

• Compare the Cache Tags of all cache entries in parallel

• Example: Block Size = 32 B blocks, we need N 27-bit comparators

° By definition: Conflict Miss = 0 for a fully associative
cache

:

 Cache Data

Byte 0

0431

:

Cache Tag (27 bits long)

Valid Bit

:

Byte 1Byte 31 :

Byte 32Byte 33Byte 63 :

 Cache Tag

Byte Select

Ex: 0x01

X

X

X

X

X

 Lec17.55

Set Associative Cache

° N-way set associative: N entries for each Cache Index
• N direct mapped caches operates in parallel

° Example: Two-way set associative cache
• Cache Index selects a “set” from the cache

• The two tags in the set are compared to the input in parallel

• Data is selected based on the tag result

Cache Data

Cache Block 0

Cache TagValid

:: :

Cache Data

Cache Block 0

Cache Tag Valid

: ::

Cache Index

Mux 01Sel1 Sel0

Cache Block

Compare
Adr Tag

Compare

OR

Hit

 Lec17.56

Disadvantage of Set Associative Cache

° N-way Set Associative Cache versus Direct Mapped
Cache:

• N comparators vs. 1
• Extra MUX delay for the data
• Data comes AFTER Hit/Miss decision and set selection

° In a direct mapped cache, Cache Block is available
BEFORE Hit/Miss:

• Possible to assume a hit and continue. Recover later if miss.

Cache Data

Cache Block 0

Cache Tag Valid

: ::

Cache Data

Cache Block 0

Cache TagValid

:: :

Cache Index

Mux 01Sel1 Sel0

Cache Block

Compare
Adr Tag

Compare

OR

Hit

 Lec17.57

° Compulsory (cold start or process migration, first
reference): first access to a block

• “Cold” fact of life: not a whole lot you can do about it

• Note: If you are going to run “billions” of instruction,
Compulsory Misses are insignificant

° Conflict (collision):
• Multiple memory locations mapped

to the same cache location

• Solution 1: increase cache size

• Solution 2: increase associativity

° Capacity:
• Cache cannot contain all blocks access by the program

• Solution: increase cache size

° Coherence (Invalidation): other process (e.g., I/O)
updates memory

A Summary on Sources of Cache Misses

 Lec17.58

Direct Mapped N-way Set Associative Fully Associative

Compulsory Miss:

Cache Size:
Small, Medium, Big?

Capacity Miss

Coherence Miss

Conflict Miss

Source of Cache Misses
Quiz

Choices: Zero, Low, Medium, High, Same

Assume constant cost.

 Lec17.59

Sources of Cache Misses Answer

Direct Mapped N-way Set Associative Fully Associative

Compulsory Miss

Cache Size

Capacity Miss

Coherence Miss

Big Medium Small

Note:
If you are going to run “billions” of instruction, Compulsory Misses are insignificant.

Same Same Same

Conflict Miss High Medium Zero

Low Medium High

Same Same Same

 Lec17.60

° Q1: Where can a block be placed in the upper level?
(Block placement)

° Q2: How is a block found if it is in the upper level?
 (Block identification)

° Q3: Which block should be replaced on a miss?
(Block replacement)

° Q4: What happens on a write?
(Write strategy)

Four Questions for Caches and Memory
Hierarchy

 Lec17.61

° Block 12 placed in 8 block cache:
• Fully associative, direct mapped, 2-way set associative
• S.A. Mapping = Block Number Modulo Number Sets

0 1 2 3 4 5 6 7Block
no.

Fully associative:
block 12 can go
anywhere

0 1 2 3 4 5 6 7Block
no.

Direct mapped:
block 12 can go
only into block 4
(12 mod 8)

0 1 2 3 4 5 6 7Block
no.

Set associative:
block 12 can go
anywhere in set 0
(12 mod 4)

Set
0

Set
1

Set
2

Set
3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

Block-frame address

1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3Block
no.

Q1: Where can a block be placed in the upper
level?

 Lec17.62

° Direct indexing (using index and block offset), tag
compares, or combination

° Increasing associativity shrinks index, expands tag

Block
offset

Block Address
Tag Index

Q2: How is a block found if it is in the upper
level?

 Lec17.63

° Easy for Direct Mapped

° Set Associative or Fully Associative:
• Random

• LRU (Least Recently Used)

Associativity: 2-way 4-way 8-way

Size LRU Random LRU Random LRU Random

16 KB 5.2% 5.7% 4.7% 5.3% 4.4% 5.0%

64 KB 1.9% 2.0% 1.5% 1.7% 1.4% 1.5%

256 KB 1.15% 1.17% 1.13% 1.13% 1.12% 1.12%

Q3: Which block should be replaced on a
miss?

 Lec17.64

° Write through—The information is written to both
the block in the cache and to the block in the lower-
level memory.

° Write back—The information is written only to the
block in the cache. The modified cache block is
written to main memory only when it is replaced.

• is block clean or dirty?

° Pros and Cons of each?
• WT: read misses cannot result in writes

• WB: no writes of repeated writes

° WT always combined with write buffers so that
don’t wait for lower level memory

Q4: What happens on a
write?

 Lec17.65

° A Write Buffer is needed between the Cache and
Memory

• Processor: writes data into the cache and the write buffer

• Memory controller: write contents of the buffer to memory

° Write buffer is just a FIFO:
• Typical number of entries: 4

• Works fine if: Store frequency (w.r.t. time) << 1 / DRAM write cycle

° Memory system designer’s nightmare:
• Store frequency (w.r.t. time) > 1 / DRAM write cycle

• Write buffer saturation

Processor
Cache

Write Buffer

DRAM

Write Buffer for Write Through

 Lec17.66

Write Buffer Saturation

° Store frequency (w.r.t. time) > 1 / DRAM write cycle
• If this condition exist for a long period of time (CPU cycle time too

quick and/or too many store instructions in a row):

- Store buffer will overflow no matter how big you make it

- The CPU Cycle Time <= DRAM Write Cycle Time

° Solution for write buffer saturation:
• Use a write back cache

• Install a second level (L2) cache: (does this always work?)

Processor
Cache

Write Buffer

DRAM

Processor
Cache

Write Buffer

DRAML2
Cache

 Lec17.67

° Assume: a 16-bit write to memory location 0x0 and
causes a miss

• Do we read in the block?

- Yes: Write Allocate

- No: Write Not Allocate

Cache Index

0

1

2

3

:

 Cache Data

Byte 0

0431

:

Cache Tag Example: 0x00

Ex: 0x00

0x50

Valid Bit

:

31

Byte 1Byte 31 :

Byte 32Byte 33Byte 63 :
Byte 992Byte 1023 :

 Cache Tag

Byte Select

Ex: 0x00

9

Write-miss Policy: Write Allocate versus Not Allocate

 Lec17.68

Impact of Memory Hierarchy on Algorithms

° Today CPU time is a function of (ops, cache misses)
vs. just f(ops):
What does this mean to Compilers, Data structures,
Algorithms?

° “The Influence of Caches on the Performance of
Sorting” by A. LaMarca and R.E. Ladner. Proceedings
of the Eighth Annual ACM-SIAM Symposium on
Discrete Algorithms, January, 1997, 370-379.

° Quicksort: fastest comparison based sorting
algorithm when all keys fit in memory

° Radix sort: also called “linear time” sort because for
keys of fixed length and fixed radix a constant number
of passes over the data is sufficient independent of
the number of keys

° For Alphastation 250, 32 byte blocks, direct mapped
L2 2MB cache, 8 byte keys, from 4000 to 4000000

 Lec17.69

Quicksort vs. Radix as vary number keys:
Instructions

Set size in keys

Instructions/key

Radix sort

Quick
sort

 Lec17.70

Quicksort vs. Radix as vary number keys: Instrs & Time

Time

Set size in keys

Instructions

Radix sort

Quick
sort

 Lec17.71

Quicksort vs. Radix as vary number keys: Cache misses

Cache misses

Set size in keys

Radix sort

Quick
sort

What is proper approach to fast algorithms?

 Lec17.72

° Set of Operations that must be supported
• read: data <= Mem[Physical Address]

• write: Mem[Physical Address] <= Data

° Determine the internal register transfers

° Design the Datapath

° Design the Cache Controller

Physical Address

Read/Write

Data

Memory
“Black Box”

Inside it has:
Tag-Data Storage,
Muxes,
Comparators, . . .

Cache
Controller

Cache
DataPathAddress

Data In

Data Out

R/W
Active

Control
Points

Signals
wait

How Do you Design a Cache?

 Lec17.73

Impact on Cycle Time

Example: direct map allows miss signal after data

IR

PC
I -Cache

D Cache

A B

R

T

IRex

IRm

IRwb

miss

invalid

Miss

Cache Hit Time:
directly tied to clock rate
increases with cache size
increases with associativity

Average Memory Access time (AMAT) =
Hit Time + Miss Rate x Miss Penalty

Compute Time = IC x CT x (ideal CPI + memory stalls)

 Lec17.74

° For in-order pipeline, 2 options:
• Freeze pipeline in Mem stage (popular early on: Sparc, R4000)

IF ID EX Mem stall stall stall … stall Mem Wr
 IF ID EX stall stall stall … stall stall Ex Wr

• Use Full/Empty bits in registers + MSHR queue
- MSHR = “Miss Status/Handler Registers” (Kroft)

Each entry in this queue keeps track of status of outstanding
memory requests to one complete memory line.

– Per cache-line: keep info about memory address.
– For each word: register (if any) that is waiting for result.
– Used to “merge” multiple requests to one memory line

- New load creates MSHR entry and sets destination register to
“Empty”. Load is “released” from pipeline.

- Attempt to use register before result returns causes instruction to
block in decode stage.

- Limited “out-of-order” execution with respect to loads.
Popular with in-order superscalar architectures.

° Out-of-order pipelines already have this functionality
built in… (load queues, etc).

What happens on a Cache
miss?

 Lec17.75

1. Reduce the miss rate,

2. Reduce the miss penalty, or

3. Reduce the time to hit in the cache.

Time = IC x CT x (ideal CPI + memory stalls/instruction)

memory stalls/instruction =
Average memory accesses/inst x AMAT =

(Average IFETCH/inst x AMATInst) +
(Average DMEM/inst x AMATData) +

Average Memory Access time =
Hit Time + (Miss Rate x Miss Penalty) =

Improving Cache Performance: 3 general
options

 Lec17.76

Cache Size (KB)

M
is

s
 R

a
te

 p
e
r

Ty
p

e

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

1 2 4 8

1
6

3
2

6
4

1
2

8

1-way

2-way

4-way

8-way

Capacity

Compulsory

Conflict

Compulsory vanishingly
small

3Cs Absolute Miss Rate (SPEC92)

 Lec17.77

Cache Size (KB)

M
is

s
 R

a
te

 p
e
r

Ty
p

e

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14
1 2 4 8

1
6

3
2

6
4

1
2

8

1-way

2-way

4-way

8-way

Capacity

Compulsory

Conflict

 miss rate 1-way associative cache size X
= miss rate 2-way associative cache size X/2

2:1 Cache Rule

 Lec17.78

Cache Size (KB)

M
is

s
 R

a
te

 p
e
r

Ty
p

e

0%

20%

40%

60%

80%

100%

1 2 4 8

1
6

3
2

6
4

1
2

8

1-way

2-way
4-way

8-way

Capacity

Compulsory

Conflict

Flaws: for fixed block size
Good: insight => invention

3Cs Relative Miss Rate

 Lec17.79

Block Size (bytes)

Miss
Rate

0%

5%

10%

15%

20%

25%

1
6

3
2

6
4

1
2

8

2
5

6

1K

4K

16K

64K

256K

1. Reduce Misses via Larger Block
Size

 Lec17.80

° 2:1 Cache Rule:
• Miss Rate DM cache size N Miss Rate 2-way cache size N/2

° Beware: Execution time is only final measure!
• Will Clock Cycle time increase?

• Hill [1988] suggested hit time for 2-way vs. 1-way
external cache +10%,
internal + 2%

2. Reduce Misses via Higher Associativity

 Lec17.81

° Example: assume CCT = 1.10 for 2-way, 1.12 for 4-way, 1.14 for
8-way vs. CCT direct mapped
Cache Size Associativity

 (KB) 1-way 2-way 4-way 8-way

 1 2.33 2.15 2.07 2.01

 2 1.98 1.86 1.76 1.68

 4 1.72 1.67 1.61 1.53

 8 1.46 1.48 1.47 1.43

 16 1.29 1.32 1.32 1.32

 32 1.20 1.24 1.25 1.27

 64 1.14 1.20 1.21 1.23

 128 1.10 1.17 1.18 1.20

(Red means A.M.A.T. not improved by more associativity)

Example: Avg. Memory Access Time vs. Miss Rate

 Lec17.82

° How to combine fast hit
time of direct mapped
yet still avoid conflict
misses?

° Add buffer to place data
discarded from cache

° Jouppi [1990]: 4-entry
victim cache removed 20%
to 95% of conflicts for a 4
KB direct mapped data
cache

° Used in Alpha, HP machines
To Next Lower Level In

Hierarchy

DATATAGS

One Cache line of DataTag and Comparator

One Cache line of DataTag and Comparator

One Cache line of DataTag and Comparator

One Cache line of DataTag and Comparator

3. Reducing Misses via a “Victim Cache”

 Lec17.83

° How to combine fast hit time of Direct Mapped and have the lower
conflict misses of 2-way SA cache?

° Divide cache: on a miss, check other half of cache to see if there, if so
have a pseudo-hit (slow hit)

° Drawback: CPU pipeline is hard if hit takes 1 or 2 cycles
• Better for caches not tied directly to processor (L2)

• Used in MIPS R1000 L2 cache, similar in UltraSPARC

Hit Time

Pseudo Hit Time Miss Penalty

Time

4. Reducing Misses via “Pseudo-Associativity”

 Lec17.84

° E.g., Instruction Prefetching
• Alpha 21064 fetches 2 blocks on a miss

• Extra block placed in “stream buffer”

• On miss check stream buffer

° Works with data blocks too:
• Jouppi [1990] 1 data stream buffer got 25% misses from 4KB

cache; 4 streams got 43%

• Palacharla & Kessler [1994] for scientific programs for 8
streams got 50% to 70% of misses from
2 64KB, 4-way set associative caches

° Prefetching relies on having extra memory
bandwidth that can be used without penalty

5. Reducing Misses by Hardware
Prefetching

 Lec17.85

° Data Prefetch
• Load data into register (HP PA-RISC loads)

• Cache Prefetch: load into cache
(MIPS IV, PowerPC, SPARC v. 9)

• Special prefetching instructions cannot cause faults;
a form of speculative execution

° Issuing Prefetch Instructions takes time
• Is cost of prefetch issues < savings in reduced misses?

• Higher superscalar reduces difficulty of issue bandwidth

6. Reducing Misses by Software Prefetching Data

 Lec17.86

° McFarling [1989] reduced caches misses by 75%
on 8KB direct mapped cache, 4 byte blocks in software

° Instructions
• Reorder procedures in memory so as to reduce conflict misses

• Profiling to look at conflicts(using tools they developed)

° Data
• Merging Arrays: improve spatial locality by single array of compound elements vs.

2 arrays

• Loop Interchange: change nesting of loops to access data in order stored in
memory

• Loop Fusion: Combine 2 independent loops that have same looping and some
variables overlap

• Blocking: Improve temporal locality by accessing “blocks” of data repeatedly vs.
going down whole columns or rows

7. Reducing Misses by Compiler
Optimizations

 Lec17.87

Summary #1 /
3:

° The Principle of Locality:
• Program likely to access a relatively small portion of the address space

at any instant of time.

- Temporal Locality: Locality in Time

- Spatial Locality: Locality in Space

° Three Major Categories of Cache Misses:
• Compulsory Misses: sad facts of life. Example: cold start misses.

• Conflict Misses: increase cache size and/or associativity.
Nightmare Scenario: ping pong effect!

• Capacity Misses: increase cache size

• Coherence Misses: invalidation caused by “external” processors or I/O

° Cache Design Space
• total size, block size, associativity

• replacement policy

• write-hit policy (write-through, write-back)

• write-miss policy

 Lec17.88

Summary #2 / 3: The Cache Design Space

° Several interacting dimensions
• cache size

• block size

• associativity

• replacement policy

• write-through vs write-back

• write allocation

° The optimal choice is a compromise
• depends on access characteristics

- workload

- use (I-cache, D-cache, TLB)

• depends on technology / cost

° Simplicity often wins

Associativity

Cache Size

Block Size

Bad

Good

Less More

Factor A Factor B

 Lec17.89

Technique MR MP HT Complexity

Larger Block Size + – 0
Higher Associativity + – 1
Victim Caches + 2
Pseudo-Associative Caches + 2
HW Prefetching of Instr/Data + 2
Compiler Controlled Prefetching + 3
Compiler Reduce Misses + 0

m
is

s
r a

te
Summary #3 / 3: Cache Miss
Optimization

° Lots of techniques people use to improve the miss
rate of caches:

	Lecture 17: Memory Systems
	The Big Picture: Where are We Now?
	Technology Trends
	Who Cares About the Memory Hierarchy?
	Today’s Situation: Microprocessor
	Impact on Performance
	The Goal: illusion of large, fast, cheap memory
	An Expanded View of the Memory System
	Why hierarchy works
	Memory Hierarchy: How Does it Work?
	Memory Hierarchy: Terminology
	Memory Hierarchy of a Modern Computer System
	How is the hierarchy managed?
	Memory Hierarchy Technology
	Main Memory Background
	Random Access Memory (RAM) Technology
	Static RAM Cell
	Typical SRAM Organization: 16-word x 4-bit
	Logic Diagram of a Typical SRAM
	Typical SRAM Timing
	Problems with SRAM
	1-Transistor Memory Cell (DRAM)
	Classical DRAM Organization (square)
	DRAM logical organization (4 Mbit)
	DRAM physical organization (4 Mbit)
	Memory Systems
	Logic Diagram of a Typical DRAM
	Key DRAM Timing Parameters
	DRAM Performance
	DRAM Write Timing
	DRAM Read Timing
	Main Memory Performance
	Slide 33
	Increasing Bandwidth - Interleaving
	Slide 35
	Independent Memory Banks
	Fewer DRAMs/System over Time
	Page Mode DRAM: Motivation
	Fast Page Mode Operation
	DRAM v. Desktop Microprocessors Cultures
	DRAM Design Goals
	DRAM History
	Today’s Situation: DRAM
	Slide 44
	Summary:
	Summary: Processor-Memory Performance Gap “Tax”
	Recall: Levels of the Memory Hierarchy
	Cache performance equations:
	Slide 49
	The Art of Memory System Design
	Example: 1 KB Direct Mapped Cache with 32 B Blocks
	Block Size Tradeoff
	Extreme Example: single line
	Another Extreme Example: Fully Associative
	Set Associative Cache
	Disadvantage of Set Associative Cache
	A Summary on Sources of Cache Misses
	Source of Cache Misses Quiz
	Sources of Cache Misses Answer
	Four Questions for Caches and Memory Hierarchy
	Q1: Where can a block be placed in the upper level?
	Q2: How is a block found if it is in the upper level?
	Q3: Which block should be replaced on a miss?
	Q4: What happens on a write?
	Write Buffer for Write Through
	Write Buffer Saturation
	Write-miss Policy: Write Allocate versus Not Allocate
	Impact of Memory Hierarchy on Algorithms
	Quicksort vs. Radix as vary number keys: Instructions
	Quicksort vs. Radix as vary number keys: Instrs & Time
	Quicksort vs. Radix as vary number keys: Cache misses
	How Do you Design a Cache?
	Impact on Cycle Time
	What happens on a Cache miss?
	Improving Cache Performance: 3 general options
	3Cs Absolute Miss Rate (SPEC92)
	2:1 Cache Rule
	3Cs Relative Miss Rate
	1. Reduce Misses via Larger Block Size
	2. Reduce Misses via Higher Associativity
	Example: Avg. Memory Access Time vs. Miss Rate
	3. Reducing Misses via a “Victim Cache”
	4. Reducing Misses via “Pseudo-Associativity”
	5. Reducing Misses by Hardware Prefetching
	6. Reducing Misses by Software Prefetching Data
	7. Reducing Misses by Compiler Optimizations
	Summary #1 / 3:
	Summary #2 / 3: The Cache Design Space
	Summary #3 / 3: Cache Miss Optimization

