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Input/Output Problems

e Wide variety of peripherals
= Human readable (screen, printer, keyboard, ...)
= Machine readable (storage, communication, ...)
Delivering different amounts of data
At different speeds
= In different formats

e All slower than CPU and RAM

e To keep CPU simple 1I/0 modules are needed to
proper interface peripherals and CPU/RAM
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/O Module Function

e Control & Timing

e CPU Communication (command, data, status,
address)

e Device Communication
e Data Buffering (to compensate different speeds)
e Error Detection (storage, transmission,...)
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/O Module Diagram
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/O Steps

e CPU checks 1I/0 module device status
e |/O module returns status

e |f ready, CPU requests data transfer
e |/O module gets data from device

e |/O module transfers data to CPU

e Variations for output, DMA, etc.
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Input Output Techniques

 Programmed
= CPU directly control 1/0 operation

e Interrupt driven

e Direct Memory Access (DMA)
= No CPU involvement
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/O Techniques
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Programmed 1/O

 CPU has direct control over 1/0
= Sensing status
= Read/write commands
= Transferring data

e CPU waits for I/0 module to complete operation
» Wastes CPU time
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Programmed 1/O - detail

e CPU requests I/0 operation
e |/O module performs operation
e |/O module sets status bits

 CPU checks status bits periodically

= 1/0 module does not inform CPU directly
= |/O module does not interrupt CPU
= CPU may wait or come back later
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Programmed I/O - Commands

e CPU issues command

= Control - telling module what to do
e e.g. spin up disk, move head
= Test - check status
e e.g. power failure? read error? data ready?

= Read/Write
e Module transfers data via buffer from/to device
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Programmed 1/O -
Addressing Devices

e Under programmed 1/0O, data transfer is very
like memory access (CPU viewpoint)

e Each device Is given a unigue identifier (i.e.,
memory address)

e CPU commands contain address

= |ldentifies module (and device if there is more than
one per module)
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/O Mapping

e Memory mapped 1/0
= Devices and memory share an address space
= 1/0 looks just like memory read/write

= No special commands for 1/0
e Large selection of memory access commands available

e |solated 1/0
= Separate address spaces
= Need I/0 or memory select lines
= Special commands for I/0
e Limited set
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Interrupt Driven 1/O

e The biggest problem of programmed 1/0 is CPU
waste of time in waiting for data to be
read/written or checking status of 1/0 module

e Solution:

= CPU issues commands to device and continues with
other activities

= No waiting time for CPU
= No repeated CPU checking of device
= |/O module interrupts when ready
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Interrupt Driven 1/O
Basic Operation

e CPU issues read command to 1/0 module

e |/0 module gets data from the peripheral while
CPU does other work

e \When data have been received I/0 module
Interrupts CPU

e CPU requests data to 1/0 module
e |/O module transfers data to CPU
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CPU Viewpoint

e |ssue read command

e Do other work

e Check for interrupt at end of each instruction
cycle

e |f interrupted:

= Save context (registers)

= Serve the interrupt signal
e Proper interrupt routine: fetch data & store
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Interrupt Processing (servicing)
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Interrupt Processing (return)
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Design Issues

e How do you identify the module issuing the
Interrupt?

« How do you deal with multiple interrupts?
* |.e. an interrupt handler being interrupted
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ldentifying Interrupting Module (1)

e Different interrupt line for each module
= Simple
= Limits number of devices

e Software poll

= CPU asks each module in turn
= Slow and time wasting
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ldentifying Interrupting Module (2)

e Daisy Chain or Hardware poll

= Interrupt Acknowledge (ACK) is sent down a line
connecting all devices

= ACK goes from a module to the next on the line until
the responsible module is found, which places a word
(vector) on data bus

= CPU uses the vector to identify proper handler routine

e Bus Master
= Module must claim the bus before it can raise interrupt
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Dealing with Multiple Interrupts

e Each interrupt line has a priority

e Higher priority lines can interrupt lower priority
lines

e |If bus mastering only current master can
Interrupt
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Direct Memory Access (DMA)

e Interrupt driven and programmed 1/O require
active CPU intervention
= CPU is tied up with transferring data in e out

= Transfer rate is limited since CPU is not fully serving
the device

e DMA Is the answer
= Additional Module (hardware) on bus
= DMA controller takes over CPU for 1/0
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DMA Operation

e CPU tells DMA controller
= Read/Write
= Device address
= Starting address of memory block for data
= Amount of data to be transferred

e CPU carries on with other work
« DMA controller deals with transfer
 DMA controller sends interrupt when finished
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DMA Cycle Stealing

DMA controller takes control over system bus
for one (or more) clock cycle(s)

One word of data Is transferred for each stolen
cycle

Not an interrupt

= CPU does not switch context

CPU is suspended just before it accesses bus
= |.e. before an operand or data fetch or a data write

Slows down CPU but not as much as CPU doing
transfer
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DMA Configurations (1)

DMA

CPU Controller

/O 1/O
Device Device

e Single Bus, Detached DMA controller

e Each transfer uses bus twice
= 1/0 <> DMA and DMA < memory

e CPU Is suspended twice

Rev. 3.1 (2005-06) by Enrico Nardelli

Main
Memory




DMA Configurations (2)

CPU DMA DMA Main
Controller Controller Memory,
N /0
/O /O Device

Device Device
e Single Bus, Integrated DMA controller

e Controller may support more than one device

e Each transfer uses bus once
= DMA < memory

 CPU Is suspended once per transfer
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DMA Configurations (3)

CPU DMA Malin
Controller Memory,
/0 1/0 /O /O

Device | | Device | | Device | | Device

e Separate 1/0 Bus
e Bus supports all DMA enabled devices

e Each transfer uses bus once
* DMA < memory

e CPU Is suspended once per transfer
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/O Channels

e |/O devices getting more sophisticated
= e.g. 3D graphics cards

e CPU instructs 1/0 controller to do transfer
e |/O controller does entire transfer

e |/O controller needs more processing power (Is a
small CPU, called 1/0 channel or processor)

e Improves overall system speed, since takes load
off CPU
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Interface to external devices

e Serial (1 bit at a time) or parallel (1 word at a
time)

e Speed
e e.g.: SCSI, USB, FireWire
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Small Computer Systems
Interface (SCSI)

Parallel interface (8, 16, 32 bit data lines)
Daisy chained, but devices are independent

Chain must be terminated at each end
= Usually one end is host adapter
= Plug in terminator or switch(es)

Devices can communicate with each other as
well as host

SCSI-1, 1980, 8 bit, 5 MHz, 5MB/s, 7 devices
SCSI-2, 1991, 16/32 bit, 10 MHz, 20/40MB/s
Ultra-SCSI
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USB - Universal Serial Bus

A single bus for all desktop devices (keyboard,
mouse, parallel, RS-232, ...), up to 127 devices

Serial transmissiom, from 1,5 (low-speed) - 12
Mb/s (high-speed) of USB-1 to 480 Mb/s of USB-2

Hierarchical topology, protocol, and cables

“Hot” connection of devices (no need to turn
power off) and automatic configuration
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IEEE 1394 FireWire

High performance serial bus
Fast, low cost, and easy to implement

Also being used In digital cameras, VCRs and TV

Daisy chain up to 63 devices

Automatic configuration (no terminators) and
tree-topologies are possible

Data rates from 25 to 400 Mb/s
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