
Rev. 3.1 (2005-06) by Enrico Nardelli 16 -

William Stallings 
Computer Organization 
and Architecture

Chapter 6
Input/Output



Rev. 3.1 (2005-06) by Enrico Nardelli 26 -

Input/Output Problems

• Wide variety of peripherals
Human readable (screen, printer, keyboard, …)
Machine readable (storage, communication, …)
Delivering different amounts of data
At different speeds
In different formats

• All slower than CPU and RAM
• To keep CPU simple I/O modules are needed to 

proper interface peripherals and CPU/RAM



Rev. 3.1 (2005-06) by Enrico Nardelli 36 -

Input/Output Module

• Interface to CPU 
and Memory

• Interface to one or 
more peripheral



Rev. 3.1 (2005-06) by Enrico Nardelli 46 -

A peripheral (abstract view)

Control
Logic

Buffer

Transducer

Control 
signals

State 
signals 

Data 
bits 

Data 
bits 

Physical medium

I/O Module



Rev. 3.1 (2005-06) by Enrico Nardelli 56 -

I/O Module Function

• Control & Timing
• CPU Communication (command, data, status, 

address)
• Device Communication
• Data Buffering (to compensate different speeds)
• Error Detection (storage, transmission,…)



Rev. 3.1 (2005-06) by Enrico Nardelli 66 -

I/O Module Diagram



Rev. 3.1 (2005-06) by Enrico Nardelli 76 -

I/O Steps

• CPU checks I/O module device status
• I/O module returns status
• If ready, CPU requests data transfer
• I/O module gets data from device
• I/O module transfers data to CPU
• Variations for output, DMA, etc.



Rev. 3.1 (2005-06) by Enrico Nardelli 86 -

Input Output Techniques

• Programmed
CPU directly control I/O operation

• Interrupt driven
• Direct Memory Access (DMA)

No CPU involvement



Rev. 3.1 (2005-06) by Enrico Nardelli 96 -

I/O Techniques



Rev. 3.1 (2005-06) by Enrico Nardelli 106 -

Programmed I/O

• CPU has direct control over I/O
Sensing status
Read/write commands
Transferring data

• CPU waits for I/O module to complete operation
• Wastes CPU time



Rev. 3.1 (2005-06) by Enrico Nardelli 116 -

Programmed I/O - detail

• CPU requests I/O operation
• I/O module performs operation
• I/O module sets status bits
• CPU checks status bits periodically

I/O module does not inform CPU directly
I/O module does not interrupt CPU
CPU may wait or come back later



Rev. 3.1 (2005-06) by Enrico Nardelli 126 -

Programmed I/O - Commands

• CPU issues command
Control - telling module what to do

• e.g. spin up disk, move head

Test - check status
• e.g. power failure? read error? data ready?

Read/Write
• Module transfers data via buffer from/to device



Rev. 3.1 (2005-06) by Enrico Nardelli 136 -

Programmed I/O -
Addressing Devices

• Under programmed I/O, data transfer is very 
like memory access (CPU viewpoint)

• Each device is given a unique identifier (i.e., 
memory address)

• CPU commands contain address
Identifies module (and device if there is more than 
one per module)



Rev. 3.1 (2005-06) by Enrico Nardelli 146 -

I/O Mapping

• Memory mapped I/O
Devices and memory share an address space
I/O looks just like memory read/write
No special commands for I/O

• Large selection of memory access commands available

• Isolated I/O
Separate address spaces
Need I/O or memory select lines
Special commands for I/O

• Limited set



Rev. 3.1 (2005-06) by Enrico Nardelli 156 -

Interrupt Driven I/O

• The biggest problem of programmed I/O is CPU 
waste of time in waiting for data to be 
read/written or checking status of I/O module

• Solution:
CPU issues commands to device and continues with 
other activities 
No waiting time for CPU
No repeated CPU checking of device
I/O module interrupts when ready



Rev. 3.1 (2005-06) by Enrico Nardelli 166 -

Interrupt Driven I/O
Basic Operation

• CPU issues read command to I/O module
• I/O module gets data from the peripheral while 

CPU does other work
• When data have been received I/O module 

interrupts CPU
• CPU requests data to I/O module
• I/O module transfers data to CPU



Rev. 3.1 (2005-06) by Enrico Nardelli 176 -

Interrupt 
processing



Rev. 3.1 (2005-06) by Enrico Nardelli 186 -

CPU Viewpoint

• Issue read command
• Do other work
• Check for interrupt at end of each instruction 

cycle
• If interrupted:

Save context (registers)
Serve the interrupt signal

• Proper interrupt routine: fetch data & store



Rev. 3.1 (2005-06) by Enrico Nardelli 196 -

Interrupt Processing (servicing)

T+M

T



Rev. 3.1 (2005-06) by Enrico Nardelli 206 -

Interrupt Processing (return)

T+M

T



Rev. 3.1 (2005-06) by Enrico Nardelli 216 -

Design Issues

• How do you identify the module issuing the 
interrupt?

• How do you deal with multiple interrupts?
i.e. an interrupt handler being interrupted



Rev. 3.1 (2005-06) by Enrico Nardelli 226 -

Identifying Interrupting Module (1)

• Different interrupt line for each module
Simple
Limits number of devices

• Software poll
CPU asks each module in turn
Slow and time wasting



Rev. 3.1 (2005-06) by Enrico Nardelli 236 -

Identifying Interrupting Module (2)

• Daisy Chain or Hardware poll
Interrupt Acknowledge (ACK) is sent down a line 
connecting all devices
ACK goes from a module to the next on the line until 
the responsible module is found, which places a word 
(vector) on data bus
CPU uses the vector to identify proper handler routine

• Bus Master
Module must claim the bus before it can raise interrupt



Rev. 3.1 (2005-06) by Enrico Nardelli 246 -

Dealing with Multiple Interrupts

• Each interrupt line has a priority
• Higher priority lines can interrupt lower priority 

lines
• If bus mastering only current master can 

interrupt



Rev. 3.1 (2005-06) by Enrico Nardelli 256 -

Direct Memory Access (DMA)

• Interrupt driven and programmed I/O require 
active CPU intervention

CPU is tied up with transferring data in e out
Transfer rate is limited since CPU is not fully serving 
the device

• DMA is the answer
Additional Module (hardware) on bus
DMA controller takes over CPU for I/O



Rev. 3.1 (2005-06) by Enrico Nardelli 266 -

DMA Operation

• CPU tells DMA controller
Read/Write
Device address
Starting address of memory block for data
Amount of data to be transferred

• CPU carries on with other work
• DMA controller deals with transfer
• DMA controller sends interrupt when finished



Rev. 3.1 (2005-06) by Enrico Nardelli 276 -

DMA Cycle Stealing
• DMA controller takes control over system bus 

for one (or more) clock cycle(s)
• One word of data is transferred for each stolen 

cycle 
• Not an interrupt

CPU does not switch context
• CPU is suspended just before it accesses bus

i.e. before an operand or data fetch or a data write
• Slows down CPU but not as much as CPU doing 

transfer



Rev. 3.1 (2005-06) by Enrico Nardelli 286 -

DMA Configurations (1)

• Single Bus, Detached DMA controller
• Each transfer uses bus twice

I/O ↔ DMA and DMA ↔ memory

• CPU is suspended twice

CPU DMA
Controller

I/O
Device

I/O
Device

Main 
Memory



Rev. 3.1 (2005-06) by Enrico Nardelli 296 -

DMA Configurations (2)

• Single Bus, Integrated DMA controller
• Controller may support more than one device
• Each transfer uses bus once

DMA ↔ memory

• CPU is suspended once per transfer

CPU DMA
Controller

I/O
Device

I/O
Device

Main 
Memory

DMA
Controller

I/O
Device



Rev. 3.1 (2005-06) by Enrico Nardelli 306 -

DMA Configurations (3)

• Separate I/O Bus
• Bus supports all DMA enabled devices
• Each transfer uses bus once

DMA ↔ memory

• CPU is suspended once per transfer

CPU DMA
Controller

I/O
Device

I/O
Device

Main 
Memory

I/O
Device

I/O
Device



Rev. 3.1 (2005-06) by Enrico Nardelli 316 -

I/O Channels

• I/O devices getting more sophisticated
e.g. 3D graphics cards

• CPU instructs I/O controller to do transfer
• I/O controller does entire transfer
• I/O controller needs more processing power (is a 

small CPU, called I/O channel or processor)
• Improves overall system speed, since takes load 

off CPU



Rev. 3.1 (2005-06) by Enrico Nardelli 326 -

Interface to external devices

• Serial (1 bit at a time) or parallel (1 word at a 
time)

• Speed
• e.g.: SCSI, USB, FireWire



Rev. 3.1 (2005-06) by Enrico Nardelli 336 -

Small Computer Systems 
Interface (SCSI)
• Parallel interface (8, 16, 32 bit data lines)
• Daisy chained, but devices are independent
• Chain must be terminated at each end

Usually one end is host adapter
Plug in terminator or switch(es)

• Devices can communicate with each other as 
well as host

• SCSI-1, 1980, 8 bit, 5 MHz, 5MB/s, 7 devices
• SCSI-2, 1991, 16/32 bit, 10 MHz, 20/40MB/s
• Ultra-SCSI



Rev. 3.1 (2005-06) by Enrico Nardelli 346 -

USB - Universal Serial Bus

• A single bus for all desktop devices (keyboard, 
mouse, parallel, RS-232, …), up to 127 devices

• Serial transmissiom, from 1,5 (low-speed) - 12 
Mb/s (high-speed) of USB-1 to 480 Mb/s of USB-2

• Hierarchical topology, protocol, and cables
• “Hot” connection of devices (no need to turn 

power off) and automatic configuration



Rev. 3.1 (2005-06) by Enrico Nardelli 356 -

IEEE 1394 FireWire

• High performance serial bus
• Fast, low cost, and easy to implement
• Also being used in digital cameras, VCRs and TV
• Daisy chain up to 63 devices
• Automatic configuration (no terminators) and 

tree-topologies are possible
• Data rates from 25 to 400 Mb/s


