William Stallings

Computer Organization
and Architecture

Chapter 6
Input/Output

Rev. 3.1 (2005-06) by Enrico Nardelli

Input/Output Problems

e Wide variety of peripherals
= Human readable (screen, printer, keyboard, ...)
= Machine readable (storage, communication, ...)
Delivering different amounts of data
At different speeds
= In different formats

e All slower than CPU and RAM

e To keep CPU simple 1I/0 modules are needed to
proper interface peripherals and CPU/RAM

Rev. 3.1 (2005-06) by Enrico Nardelli 6 -

Input/Output Module

Address Lines

e Interface to CPU

Svstem
and Memory Data Lines Bus
e |Interface to one or Caatrol Lines
more peripheral N

I/O Module

N\

¥ 3 *
Links to
peripheral
devices

Rev. 3.1 (2005-06) by Enrico Nardelli 6- 3

A peripheral (abstract view)

/O Module

Control State I Data
signals signals bits

Control + Buffer

Logic

Transducer
Data

' bits

Physical medium

Rev. 3.1 (2005-06) by Enrico Nardelli

/O Module Function

e Control & Timing

e CPU Communication (command, data, status,
address)

e Device Communication
e Data Buffering (to compensate different speeds)
e Error Detection (storage, transmission,...)

Rev. 3.1 (2005-06) by Enrico Nardelli 6- 5

/O Module Diagram

Interface to
External Device

~A—

Interface to
System Bus

~A

Data
Lines

Address

L

_>|

Data Registers

|4_

_>I Status/Control Registers

Y

External
Device
Interface
Logic

P Data

Status

Lines ‘

Control

/0O
Logic

>

Lines <

External
Device
Interface
Logic

P Control

P Data

Status

Rev. 3.1 (2005-06) by Enrico Nardelli

P Control

/O Steps

e CPU checks 1I/0 module device status
e |/O module returns status

e |f ready, CPU requests data transfer
e |/O module gets data from device

e |/O module transfers data to CPU

e Variations for output, DMA, etc.

Rev. 3.1 (2005-06) by Enrico Nardelli

Input Output Techniques

 Programmed
= CPU directly control 1/0 operation

e Interrupt driven

e Direct Memory Access (DMA)
= No CPU involvement

Rev. 3.1 (2005-06) by Enrico Nardelli

/O Techniques

Issue Read
command to
/O module

Read status
of [/O
module

/0

Read word
from /O
Module

/O

Write word
into memory

Next instruction

{a) Programmed 1O

CPU

CPU

Error
condition

CPU

memory

Issue Read
command to
/O module

Read status
of /O

module /O

Fead word
from /O
Module

Write word
into memory

Next instruction

‘PU

1O
Do something

else

=== Interrupt

CPU

Error

condition

CPU

memory

(b) Interrupt-driven /'O

Issue Read PU DMA
block command Do something
to VO module =7 "™else
Read status — — - Interrupt
of DMA
module DMA CPU
Next instruction
(c) Direct memory access

Programmed 1/O

 CPU has direct control over 1/0
= Sensing status
= Read/write commands
= Transferring data

e CPU waits for I/0 module to complete operation
» Wastes CPU time

Rev. 3.1 (2005-06) by Enrico Nardelli 6- 10

Programmed 1/O - detail

e CPU requests I/0 operation
e |/O module performs operation
e |/O module sets status bits

 CPU checks status bits periodically

= 1/0 module does not inform CPU directly
= |/O module does not interrupt CPU
= CPU may wait or come back later

Rev. 3.1 (2005-06) by Enrico Nardelli

- 11

Programmed I/O - Commands

e CPU issues command

= Control - telling module what to do
e e.g. spin up disk, move head
= Test - check status
e e.g. power failure? read error? data ready?

= Read/Write
e Module transfers data via buffer from/to device

Rev. 3.1 (2005-06) by Enrico Nardelli

- 12

Programmed 1/O -
Addressing Devices

e Under programmed 1/0O, data transfer is very
like memory access (CPU viewpoint)

e Each device Is given a unigue identifier (i.e.,
memory address)

e CPU commands contain address

= |ldentifies module (and device if there is more than
one per module)

Rev. 3.1 (2005-06) by Enrico Nardelli

- 13

/O Mapping

e Memory mapped 1/0
= Devices and memory share an address space
= 1/0 looks just like memory read/write

= No special commands for 1/0
e Large selection of memory access commands available

e |solated 1/0
= Separate address spaces
= Need I/0 or memory select lines
= Special commands for I/0
e Limited set

Rev. 3.1 (2005-06) by Enrico Nardelli

- 14

Interrupt Driven 1/O

e The biggest problem of programmed 1/0 is CPU
waste of time in waiting for data to be
read/written or checking status of 1/0 module

e Solution:

= CPU issues commands to device and continues with
other activities

= No waiting time for CPU
= No repeated CPU checking of device
= |/O module interrupts when ready

Rev. 3.1 (2005-06) by Enrico Nardelli 6- 15

Interrupt Driven 1/O
Basic Operation

e CPU issues read command to 1/0 module

e |/0 module gets data from the peripheral while
CPU does other work

e \When data have been received I/0 module
Interrupts CPU

e CPU requests data to 1/0 module
e |/O module transfers data to CPU

Rev. 3.1 (2005-06) by Enrico Nardelli 6 -

16

Interrupt
processing

Hardware

— A

Device controller or
other system hardware
issues an interrupt

Processor finishes
execution of current

instruction

Processor signals
acknowledgment
of interrupt

Processor pushes PSW
and PC onto control
stack

Processor loads new
PC value based on
interrupt

Software

— A

Rev. 3.1 (2005-06) by Enrico Nardelli

|

Save remainder of

process state
information

Process interrupt

Restore process state
information

Restore old PSW
and PC

CPU Viewpoint

e |ssue read command

e Do other work

e Check for interrupt at end of each instruction
cycle

e |f interrupted:

= Save context (registers)

= Serve the interrupt signal
e Proper interrupt routine: fetch data & store

Rev. 3.1 (2005-06) by Enrico Nardelli

- 18

Interrupt Processing (servicing)

I+ M
Y —m N+1) L T
Program Stack Pointer
Counter Registers
¥ Start
T
>
3! —
N+ 1 — W T+M
¥+ [Return
Lser's Interrupt Service Control
Program Routine Stack

Rev. 3.1 (2005-06) by Enrico Nardelli 6- 19

Interrupt Processing (return)

N+1
|—b- ¥+ I
Program
Counter
N
N+1
User's

Program

¥

L

H

—

Registers

Start

L o 7 M

Stack Pointer

Return

Interrupt Service

E outine

Rev. 3.1 (2005-06) by Enrico Nardelli

T
N+1 T+M
Control
Stack

6- 20

Design Issues

e How do you identify the module issuing the
Interrupt?

« How do you deal with multiple interrupts?
* |.e. an interrupt handler being interrupted

Rev. 3.1 (2005-06) by Enrico Nardelli 6- 21

ldentifying Interrupting Module (1)

e Different interrupt line for each module
= Simple
= Limits number of devices

e Software poll

= CPU asks each module in turn
= Slow and time wasting

Rev. 3.1 (2005-06) by Enrico Nardelli 6- 22

ldentifying Interrupting Module (2)

e Daisy Chain or Hardware poll

= Interrupt Acknowledge (ACK) is sent down a line
connecting all devices

= ACK goes from a module to the next on the line until
the responsible module is found, which places a word
(vector) on data bus

= CPU uses the vector to identify proper handler routine

e Bus Master
= Module must claim the bus before it can raise interrupt

Rev. 3.1 (2005-06) by Enrico Nardelli 6- 23

Dealing with Multiple Interrupts

e Each interrupt line has a priority

e Higher priority lines can interrupt lower priority
lines

e |If bus mastering only current master can
Interrupt

Rev. 3.1 (2005-06) by Enrico Nardelli 6- 24

Direct Memory Access (DMA)

e Interrupt driven and programmed 1/O require
active CPU intervention
= CPU is tied up with transferring data in e out

= Transfer rate is limited since CPU is not fully serving
the device

e DMA Is the answer
= Additional Module (hardware) on bus
= DMA controller takes over CPU for 1/0

Rev. 3.1 (2005-06) by Enrico Nardelli 6 -

25

DMA Operation

e CPU tells DMA controller
= Read/Write
= Device address
= Starting address of memory block for data
= Amount of data to be transferred

e CPU carries on with other work
« DMA controller deals with transfer
 DMA controller sends interrupt when finished

Rev. 3.1 (2005-06) by Enrico Nardelli

- 26

DMA Cycle Stealing

DMA controller takes control over system bus
for one (or more) clock cycle(s)

One word of data Is transferred for each stolen
cycle

Not an interrupt

= CPU does not switch context

CPU is suspended just before it accesses bus
= |.e. before an operand or data fetch or a data write

Slows down CPU but not as much as CPU doing
transfer

Rev. 3.1 (2005-06) by Enrico Nardelli 6- 27

DMA Configurations (1)

DMA

CPU Controller

/O 1/O
Device Device

e Single Bus, Detached DMA controller

e Each transfer uses bus twice
= 1/0 <> DMA and DMA < memory

e CPU Is suspended twice

Rev. 3.1 (2005-06) by Enrico Nardelli

Main
Memory

DMA Configurations (2)

CPU DMA DMA Main
Controller Controller Memory,
N /0
/O /O Device

Device Device
e Single Bus, Integrated DMA controller

e Controller may support more than one device

e Each transfer uses bus once
= DMA < memory

 CPU Is suspended once per transfer

Rev. 3.1 (2005-06) by Enrico Nardelli 6- 29

DMA Configurations (3)

CPU DMA Malin
Controller Memory,
/0 1/0 /O /O

Device | | Device | | Device | | Device

e Separate 1/0 Bus
e Bus supports all DMA enabled devices

e Each transfer uses bus once
* DMA < memory

e CPU Is suspended once per transfer

Rev. 3.1 (2005-06) by Enrico Nardelli 6- 30

/O Channels

e |/O devices getting more sophisticated
= e.g. 3D graphics cards

e CPU instructs 1/0 controller to do transfer
e |/O controller does entire transfer

e |/O controller needs more processing power (Is a
small CPU, called 1/0 channel or processor)

e Improves overall system speed, since takes load
off CPU

Rev. 3.1 (2005-06) by Enrico Nardelli 6- 31

Interface to external devices

e Serial (1 bit at a time) or parallel (1 word at a
time)

e Speed
e e.g.: SCSI, USB, FireWire

Rev. 3.1 (2005-06) by Enrico Nardelli

- 32

Small Computer Systems
Interface (SCSI)

Parallel interface (8, 16, 32 bit data lines)
Daisy chained, but devices are independent

Chain must be terminated at each end
= Usually one end is host adapter
= Plug in terminator or switch(es)

Devices can communicate with each other as
well as host

SCSI-1, 1980, 8 bit, 5 MHz, 5MB/s, 7 devices
SCSI-2, 1991, 16/32 bit, 10 MHz, 20/40MB/s
Ultra-SCSI

Rev. 3.1 (2005-06) by Enrico Nardelli

- 33

USB - Universal Serial Bus

A single bus for all desktop devices (keyboard,
mouse, parallel, RS-232, ...), up to 127 devices

Serial transmissiom, from 1,5 (low-speed) - 12
Mb/s (high-speed) of USB-1 to 480 Mb/s of USB-2

Hierarchical topology, protocol, and cables

“Hot” connection of devices (no need to turn
power off) and automatic configuration

Rev. 3.1 (2005-06) by Enrico Nardelli 6- 34

IEEE 1394 FireWire

High performance serial bus
Fast, low cost, and easy to implement

Also being used In digital cameras, VCRs and TV

Daisy chain up to 63 devices

Automatic configuration (no terminators) and
tree-topologies are possible

Data rates from 25 to 400 Mb/s

Rev. 3.1 (2005-06) by Enrico Nardelli

- 35

