## Number

Representation

## Number System :: The Basics

- We are accustomed to using the so-called decimal number system
$\square$ Ten digits :: 0,1,2,3,4,5,6,7,8,9
$\square$ Every digit position has a weight which is a power of 10
$\square$ Base or radix is 10
Example:

$$
\begin{aligned}
& 234=2 \times 10^{2}+3 \times 10^{1}+4 \times 10^{0} \\
& 250.67=2 \times 10^{2}+5 \times 10^{1}+0 \times 10^{0}+6 \times \\
& 10^{-1}+7 \times 10^{-2}
\end{aligned}
$$

## Binary Number System

- Two digits:
$\square 0$ and 1
$\square$ Every digit position has a weight which is a power of 2
$\square$ Base or radix is 2
- Example:

$$
\begin{aligned}
& 110=1 \times 2^{2}+1 \times 2^{1}+0 \times 2^{0} \\
& 101.01=1 \times 2^{2}+0 \times 2^{1}+1 \times 2^{0}+0 \times 2^{-1}+ \\
& \quad 1 \times 2^{-2}
\end{aligned}
$$

## Positional Number Systems (General)

## Decimal Numbers:

10 Symbols $\{0,1,2,3,4,5,6,7,8,9\}$, Base or Radix is 10
$136.25=1 \times 10^{2}+3 \times 10^{1}+6 \times 10^{0}+2 \times 10^{-1}+3 \times 10^{-2}$

## Positional Number Systems (General)

## Decimal Numbers:

10 Symbols $\{0,1,2,3,4,5,6,7,8,9\}$, Base or Radix is 10
$136.25=1 \times 10^{2}+3 \times 10^{1}+6 \times 10^{0}+2 \times 10^{-1}+3 \times 10^{-2}$
Binary Numbers:

- 2 Symbols $\{0,1\}$, Base or Radix is 2
$101.01=1 \times 2^{2}+0 \times 2^{1}+1 \times 2^{0}+0 \times 2^{-1}+1 \times 2^{-2}$


## Positional Number Systems (General)

## Decimal Numbers:

10 Symbols $\{0,1,2,3,4,5,6,7,8,9\}$, Base or Radix is 10
$136.25=1 \times 10^{2}+3 \times 10^{1}+6 \times 10^{0}+2 \times 10^{-1}+5 \times 10^{-2}$
Binary Numbers:

* 2 Symbols $\{0,1\}$, Base or Radix is 2
$101.01=1 \times 2^{2}+0 \times 2^{1}+1 \times 2^{0}+0 \times 2^{-1}+1 \times 2^{-2}$
Octal Numbers:
8 Symbols $\{0,1,2,3,4,5,6,7\}$, Base or Radix is 8
$621.03=6 \times 8^{2}+2 \times 8^{1}+1 \times 8^{0}+0 \times 8^{-1}+3 \times 8^{-2}$


## Positional Number Systems (General)

## Decimal Numbers:

10 Symbols $\{0,1,2,3,4,5,6,7,8,9\}$, Base or Radix is 10
$136.25=1 \times 10^{2}+3 \times 10^{1}+6 \times 10^{0}+2 \times 10^{-1}+3 \times 10^{-2}$
Binary Numbers:

* 2 Symbols $\{0,1\}$, Base or Radix is 2
$101.01=1 \times 2^{2}+0 \times 2^{1}+1 \times 2^{0}+0 \times 2^{-1}+1 \times 2^{-2}$
Octal Numbers:
8 Symbols $\{0,1,2,3,4,5,6,7\}$, Base or Radix is 8
$621.03=6 \times 8^{2}+2 \times 8^{1}+1 \times 8^{0}+0 \times 8^{-1}+3 \times 8^{-2}$
Hexadecimal Numbers:
16 Symbols \{0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F\}, Base is 16
* $6 \mathrm{AF} .3 \mathrm{C}=6 \times 16^{2}+10 \times 16^{1}+15 \times 16^{0}+3 \times 16^{-1}+12 \times 16^{-2}$


## Binary-to-Decimal Conversion

- Each digit position of a binary number has a weight
$\square$ Some power of 2
- A binary number:

$$
B=b_{n-1} b_{n-2} \ldots \ldots b_{1} b_{0} \cdot b_{-1} b_{-2} \ldots \ldots b_{-m}
$$

Corresponding value in decimal:

$$
D=\sum_{i=-m}^{n-1} b_{i} 2^{i}
$$

## Examples

$$
\left.\left.\begin{array}{c}
101011 \rightarrow 1 \times 2^{5}+0 \times 2^{4}+1 \times 2^{3}+0 \times 2^{2}+1 \times 2^{1}+1 \times 2^{0} \\
=43 \\
\begin{array}{rl}
(101011)_{2}=(43)_{10}
\end{array} \\
.0101 \rightarrow 0 \times 2^{-1}+1 \times 2^{-2}+0 \times 2^{-3}+1 \times 2^{-4} \\
=.3125
\end{array}\right] \begin{array}{c}
(.0101)_{2}=(.3125)_{10} \\
101.11 \rightarrow 1 \times 2^{2}+0 \times 2^{1}+1 \times 2^{0}+1 \times 2^{-1}+1 \times 2^{-2} \\
=5.75
\end{array}\right] \begin{gathered}
(101.11)_{2}=(5.75)_{10}
\end{gathered}
$$

## Decimal to Binary: Integer Part

Consider the integer and fractional parts separately.
For the integer part:
-Repeatedly divide the given number by 2 , and go on accumulating the remainders, until the number becomes zero.
-Arrange the remainders in reverse order.

## Base Numb Rem

| 2 | 89 |  |
| :---: | :---: | :---: |
| 2 | 44 | 1 |
| 2 | 22 | 0 |
| 2 | 11 | 0 |
| 2 | 5 | 1 |
| 2 | 2 | 1 |
| 2 | 1 | 0 |
|  | 0 | 1 |

$$
(89)_{10}=(1011001)_{2}
$$

## Decimal to Binary: Integer Part

Consider the integer and fractional parts separately.
For the integer part:
-Repeatedly divide the given number by 2 , and go on accumulating the remainders, until the number becomes zero.
-Arrange the remainders in reverse order.

## Base NumbRem

| 2 | 89 |  |
| :---: | :---: | :---: |
| 2 | 44 | 1 |
| 2 | 22 | 0 |
| 2 | 11 | 0 |
| 2 | 5 | 1 |
| 2 | 2 | 1 |
| 2 | 1 | 0 |
|  | 0 | 1 |


| 2 | 66 |  |
| :---: | :---: | :---: |
| 2 | 33 | 0 |
| 2 | 16 | 1 |
| 2 | 8 | 0 |
| 2 | 4 | 0 |
| 2 | 2 | 0 |
| 2 | 1 | 0 |
|  | 0 | 1 |

$(66)_{10}=(1000010)_{2}$

## Decimal to Binary: Integer Part

Consider the integer and fractional parts separately.
For the integer part:
-Repeatedly divide the given number by 2 , and go on accumulating the remainders, until the number becomes zero.
-Arrange the remainders in reverse order.

## Base NumbRem

| 2 | 89 |  |
| :---: | :---: | :---: |
| 2 | 44 | 1 |
| 2 | 22 | 0 |
| 2 | 11 | 0 |
| 2 | 5 | 1 |
| 2 | 2 | 1 |
| 2 | 1 | 0 |
|  | 0 | 1 |


| 2 | 66 |  |
| :---: | :---: | :---: |
| 2 | 33 | 0 |
| 2 | 16 | 1 |
| 2 | 8 | 0 |
| 2 | 4 | 0 |
| 2 | 2 | 0 |
| 2 | 1 | 0 |
|  | 0 | 1 |


| 2 | 239 |  |
| :---: | :---: | :---: |
| 2 | 119 | 1 |
| 2 | 59 | 1 |
| 2 | 29 | 1 |
| 2 | 14 | 1 |
| 2 | 7 | 0 |
| 2 | 3 | 1 |
| 2 | 1 | 1 |
|  | 0 | 1 |

$(66)_{10}=(1000010)_{2}$

$$
(239)_{10}=(11101111)_{2}
$$

## Decimal to Binary: Fraction Part

-Repeatedly multiply the given fraction by 2.
Accumulate the integer part ( 0 or 1 ).
If the integer part is 1 , chop it off.
=Arrange the integer parts in the order they are obtained.

| Example: 0.634 |
| :---: |
| $.634 \times 2=1.268$ |
| $.268 \times 2=0.536$ |
| $.536 \times 2=1.072$ |
| $.072 \times 2=0.144$ |
| $.144 \times 2=0.288$ |
| $:$ |
| $:$ |
| $(.634)_{10}=(.10100 \ldots . .)_{2}$ |

## Decimal to Binary: Fraction Part

-Repeatedly multiply the given fraction by 2.
Accumulate the integer part ( 0 or 1 ).
If the integer part is 1 , chop it off.
-Arrange the integer parts in the order they are obtained.
$\left.\begin{array}{c}\text { Example: } 0.634 \\ .634 \times 2= \\ .268 \times 2\end{array}\right)=0.536$
$.536 \times 2=1.072$
$.072 \times 2=0.144$
$.144 \times 2=0.288$
$:$
$:$
$(.634)_{10}=(.10100 \ldots \ldots)_{2}$

$$
\begin{aligned}
& \text { Example: } 0.0625 \\
& .0625 \times 2=0.125 \\
& .1250 \times 2=0.250 \\
& .2500 \times 2=0.500 \\
& .5000 \times 2=1.000 \\
& (.0625)_{10}=(.0001)_{2}
\end{aligned}
$$

## Decimal to Binary: Fraction Part

-Repeatedly multiply the given fraction by 2.
Accumulate the integer part ( 0 or 1 ).
If the integer part is 1 , chop it off.
-Arrange the integer parts in the order they are obtained.

| Example: 0.634 |
| :---: |
| $.634 \times 2=1.268$ |
| $.268 \times 2=0.536$ |
| $.536 \times 2=1.072$ |
| $.072 \times 2=0.144$ |
| $.144 \times 2=0.288$ |
| $:$ |
| $:$ |
| $(.634)_{10}=(.10100 \ldots . .)_{2}$ |


| Example: 0.0625 |
| :---: |
| $.0625 \times 2=0.125$ |
| $.1250 \times 2=0.250$ |
| $.2500 \times 2=0.500$ |
| $.5000 \times 2=1.000$ |
| $(.0625)_{10}=(.0001)_{2}$ |
| $(37)_{10}=(100101)_{2}$ |
| $(.0625)_{10}=(.0001)_{2}$ |
| $(37.0625)_{10}=(100101.0001)_{2}$ |

## Hexadecimal Number System

- A compact way of representing binary numbers
- 16 different symbols (radix = 16)
$0 \rightarrow 0000$
$0 \rightarrow 0001$
$1 \rightarrow 1000$
$2 \rightarrow 0010$
$\mathrm{~A} \rightarrow 1010$
$3 \rightarrow 0011$
$\mathrm{~B} \rightarrow 1011$
$4 \rightarrow 0100$
$\mathrm{C} \rightarrow 1100$
$5 \rightarrow 0101$
$6 \rightarrow 0110$
$\mathrm{D} \rightarrow 1101$
$7 \rightarrow 0111$ $\mathrm{~F} \rightarrow 1110$


## Binary-to-Hexadecimal Conversion

- For the integer part,
$\square$ Scan the binary number from right to left
$\square$ Translate each group of four bits into the corresponding hexadecimal digit
- Add leading zeros if necessary
- For the fractional part,
$\square$ Scan the binary number from left to right
$\square$ Translate each group of four bits into the corresponding hexadecimal digit
- Add trailing zeros if necessary


## Example

1. $(\underline{1011} \underline{0100} \underline{0011})_{2}=(\mathrm{B} 43)_{16}$
2. $(101010 \underline{0001})_{2}=(2 \mathrm{~A} 1)_{16}$
3. $(.1000010)_{2}$
4. $(\underline{101} \cdot \underline{0101} \underline{111})_{2}=(5.5 \mathrm{E})_{16}$

## Hexadecimal-to-Binary Conversion

- Translate every hexadecimal digit into its 4-bit binary equivalent
- Examples:

$$
\begin{array}{ll}
(3 A 5)_{16} & =(001110100101)_{2} \\
(12.3 D)_{16} & =(00010010.00111101)_{2} \\
(1.8)_{16} & =(0001 \cdot 1000)_{2}
\end{array}
$$

## Unsigned Binary Numbers

- An n-bit binary number

$$
B=b_{n-1} b_{n-2} \ldots b_{2} b_{1} b_{0}
$$

- $2^{\mathrm{n}}$ distinct combinations are possible, 0 to $2^{\mathrm{n}}-1$.
- For example, for $\mathrm{n}=3$, there are 8 distinct combinations
$\square 000,001,010,011,100,101,110,111$
- Range of numbers that can be represented

$$
\begin{aligned}
& \mathrm{n}=8 \quad \rightarrow \quad 0 \text { to } 2^{8}-1(255) \\
& \mathrm{n}=16 \rightarrow 0 \text { to } 2^{16}-1(65535) \\
& \mathrm{n}=32 \rightarrow 0 \text { to } 2^{32-1}(4294967295)
\end{aligned}
$$

## Signed Integer Representation

- Many of the numerical data items that are used in a program are signed (positive or negative)
$\square$ Question:: How to represent sign?

■ Three possible approaches:
$\square$ Sign-magnitude representation
$\square$ One's complement representation
$\square$ Two's complement representation

## Sign-magnitude Representation

- For an n-bit number representation
$\square$ The most significant bit (MSB) indicates sign
$0 \rightarrow$ positive
$1 \rightarrow$ negative
$\square$ The remaining $\mathrm{n}-1$ bits represent magnitude



## Contd.

- Range of numbers that can be represented:

Maximum :: + (2n-1
Minimum :: $-\left(2^{n-1}-1\right)$

- A problem:

Two different representations of zero

$$
\begin{array}{lll}
+0 & \rightarrow & 000 \ldots . .0 \\
-0 & \rightarrow & 1000 \ldots . .0
\end{array}
$$

## One's Complement Representation

- Basic idea:
$\square$ Positive numbers are represented exactly as in sign-magnitude form
$\square$ Negative numbers are represented in 1's complement form
- How to compute the 1's complement of a number?
$\square$ Complement every bit of the number ( $1 \rightarrow 0$ and $0 \rightarrow 1$ )
$\square$ MSB will indicate the sign of the number
$0 \rightarrow$ positive
$1 \rightarrow$ negative


## Example :: n=4

$$
\begin{array}{ll}
0000 \rightarrow+0 & 1000 \rightarrow-7 \\
0001 \rightarrow+1 & 1001 \rightarrow-6 \\
0010 \rightarrow+2 & 1010 \rightarrow-5 \\
0011 \rightarrow+3 & 1011 \rightarrow-4 \\
0100 \rightarrow+4 & 1100 \rightarrow-3 \\
0101 \rightarrow+5 & 1101 \rightarrow-2 \\
0110 \rightarrow+6 & 1110 \rightarrow-1 \\
0111 \rightarrow+7 & 1111 \rightarrow-0
\end{array}
$$

To find the representation of, say, -4 , first note that

$$
\begin{aligned}
& +4=0100 \\
& -4=1 \text { 's complement of } 0100=1011
\end{aligned}
$$

## Contd.

- Range of numbers that can be represented:

Maximum :: + (2n-1 -1$)$
Minimum :: $-\left(2^{n-1}-1\right)$

- A problem:

Two different representations of zero.

$$
\begin{aligned}
& +0 \rightarrow 0000 \ldots 0 \\
& -0 \rightarrow 1111 \ldots .1
\end{aligned}
$$

- Advantage of 1's complement representation
$\square$ Subtraction can be done using addition
$\square$ Leads to substantial saving in circuitry


## Two's Complement Representation

- Basic idea:
$\square$ Positive numbers are represented exactly as in sign-magnitude form
$\square$ Negative numbers are represented in 2's complement form
■ How to compute the 2's complement of a number?
$\square$ Complement every bit of the number ( $1 \rightarrow 0$ and $0 \rightarrow 1$ ), and then add one to the resulting number
$\square$ MSB will indicate the sign of the number
$0 \rightarrow$ positive
$1 \rightarrow$ negative

```
Example : n=4
0000 -> +0
0001 -> +1
0010 -> +2
0011 -> +3
0100 -> +4
0101 -> +5
0110 -> +6
0111 -> +7
```

$$
\begin{aligned}
& 1000 \rightarrow-8 \\
& 1001 \rightarrow-7 \\
& 1010 \rightarrow-6 \\
& 1011 \rightarrow-5 \\
& 1100 \rightarrow-4 \\
& 1101 \rightarrow-3 \\
& 1110 \rightarrow-2 \\
& 1111 \rightarrow-1
\end{aligned}
$$

To find the representation of, say, -4 , first note that

$$
\begin{aligned}
& +4=0100 \\
& -4=2 ' s \text { complement of } 0100=1011+1=1100
\end{aligned}
$$

Rule : Value $=-\mathrm{msb}^{*} 2^{(\mathrm{n}-1)}+$ [unsigned value of rest]
Example: $0110=0+6=6 \quad 1110=-8+6=-2$

## Contd.

- Range of numbers that can be represented:

$$
\begin{aligned}
& \text { Maximum }::+\left(2^{n-1}-1\right) \\
& \text { Minimum } \quad::-2^{n-1}
\end{aligned}
$$

- Advantage:
$\square$ Unique representation of zero
$\square$ Subtraction can be done using addition
$\square$ Leads to substantial saving in circuitry
- Almost all computers today use the 2's complement representation for storing negative numbers


## Contd.

## - In C

$\square$ short int

- 16 bits $\rightarrow+\left(2^{15}-1\right)$ to $-2^{15}$
$\square$ int or long int
-32 bits $\boldsymbol{\rightarrow}+\left(2^{31}-1\right)$ to $-2^{31}$
$\square$ long long int
-64 bits $\rightarrow+\left(2^{63}-1\right)$ to $-2^{63}$


## Adding Binary Numbers

- Basic Rules:
$\square 0+0=0$
$\square 0+1=1$
$\square 1+0=1$
$\square 1+1=0$ (carry 1 )


## Example:

01101001
00110100
$\qquad$
10011101

## Subtraction Using Addition :: 1's Complement

- How to compute $A-B$ ?
$\square$ Compute the 1's complement of $B$ (say, $B_{1}$ ).
$\square$ Compute $\mathrm{R}=\mathrm{A}+\mathrm{B}_{1}$
$\square$ If the carry obtained after addition is ' 1 '
- Add the carry back to R (called end-around carry)
- That is, $\mathrm{R}=\mathrm{R}+1$
- The result is a positive number

Else

- The result is negative, and is in 1's complement form


## Example 1 :: 6-2

1's complement of $2=1101$


| Assume 4-bit |
| :--- |
| representations |
| Since there is a carry, it is |
| added back to the result |
| The result is positive |

## Example 2 :: 3-5

1's complement of $5=1010$
$3:: 0011$ A
$-5: \because \frac{1010}{1101} \mathbf{B}_{1}$


Assume 4-bit representations
Since there is no carry, the result is negative

1101 is the 1's complement of 0010, that is, it represents -2

## Subtraction Using Addition :: 2's Complement

- How to compute $A-B$ ?
$\square$ Compute the 2's complement of B (say, $\mathrm{B}_{2}$ )
$\square$ Compute $\mathrm{R}=\mathrm{A}+\mathrm{B}_{2}$
$\square$ If the carry obtained after addition is ' 1 '
- Ignore the carry
- The result is a positive number

Else

- The result is negative, and is in 2's complement form


## Example 1 :: 6-2

2's complement of $2=1101+1=1110$


| Assume 4-bit |
| :--- |
| representations |
| Presence of carry indicates |
| that the result is positive |
| No need to add the end- <br> around carry like in 1's <br> complement |

## Example 2 :: 3-5

2's complement of $5=1010+1=1011$

$$
\begin{array}{cccc}
3 & : & 0011 & \mathbf{A} \\
-5 & : & \frac{1011}{1110} & \mathbf{B}_{2} \\
& & & \\
& & & \\
& & & -2
\end{array}
$$

## Assume 4-bit representations

Since there is no carry, the result is negative

1110 is the 2's complement of 0010, that is, it represents -2

## 2's complement arithmetic: More Examples

- Example 1: 18-11 = ?
- 18 is represented as 00010010
- 11 is represented as 00001011
- 1's complement of 11 is 11110100
- 2's complement of 11 is 11110101
- Add 18 to 2's complement of 11

```
00010010
+ 11110101
```

00000111 (with a carry of 1 which is ignored)

- Example 2: 7-9 = ?
- 7 is represented as 00000111
- 9 is represented as 00001001
- 1's complement of 9 is 11110110
- 2's complement of 9 is 11110111
- Add 7 to 2 's complement of 9

```
    00000111
+ 11110111
11111110 (with a carry of 0 which is ignored)
```

11111110 is -2

## Overflow/Underflow:

Adding two +ve (-ve) numbers should not produce a -ve (+ve) number. If it does, overflow (underflow) occurs

## Overflow/Underflow:

Adding two +ve (-ve) numbers should not produce a -ve (+ve) number. If it does, overflow (underflow) occurs

Another equivalent condition : carry in and carry out from Most Significant Bit (MSB) differ.

## Overflow/Underflow:

Adding two +ve (-ve) numbers should not produce a -ve (+ve) number. If it does, overflow (underflow) occurs

Another equivalent condition : carry in and carry out from Most Significant Bit (MSB) differ.

```
(64) 01000000
(4) 00000100
(68)}0100010
```

carry (out)(in)
$0 \quad 0$

## Overflow/Underflow:

Adding two +ve (-ve) numbers should not produce a -ve (+ve) number. If it does, overflow (underflow) occurs

Another equivalent condition : carry in and carry out from Most Significant Bit (MSB) differ.


| carry (out)(in) |
| :---: |
| $0 \quad 0$ |


| (64) | 01000000 |
| ---: | ---: |
| $(96)$ | 01100000 |
|  | $-----------96)$ |



## Floating-point Numbers

- The representations discussed so far applies only to integers
$\square$ Cannot represent numbers with fractional parts
- We can assume a decimal point before a signed number
$\square$ In that case, pure fractions (without integer parts) can be represented
- We can also assume the decimal point somewhere in between
$\square$ This lacks flexibility
$\square$ Very large and very small numbers cannot be represented


## Representation of Floating-Point Numbers

- A floating-point number $F$ is represented by a doublet <M,E>:
$F=M \times B^{E}$
- $\mathrm{B} \rightarrow$ exponent base (usually 2 )
- $\mathrm{M} \rightarrow$ mantissa
- E $\rightarrow$ exponent
$\square \mathrm{M}$ is usually represented in 2's complement form, with an implied binary point before it
- For example,

In decimal, $0.235 \times 10^{6}$
In binary, $0.101011 \times 2^{0110}$

## Example :: 32-bit representation


$\square \mathrm{M}$ represents a 2's complement fraction

$$
1>M>-1
$$

$\square E$ represents the exponent (in 2's complement form)

$$
127>E>-128
$$

- Points to note:
$\square$ The number of significant digits depends on the number of bits in M
- 6 significant digits for 24-bit mantissa
$\square$ The range of the number depends on the number of bits in E
- $10^{38}$ to $10^{-38}$ for 8 -bit exponent.


## A Warning

- The representation for floating-point numbers as shown is just for illustration
- The actual representation is a little more complex
■ Example: IEEE 754 Floating Point format


## IEEE 754 Floating-Point Format (Single Precision)

| $S$ | $E($ Exponent | $M$ (Mantissa) |
| :---: | :---: | :---: |
| $(31)$ | $(30 \ldots 23)$ | $(22 \ldots 0)$ |

$\mathrm{S}:$ Sign ( 0 is +ve, 1 is -ve )
E : Exponent (More bits gives a higher range)
M: Mantissa (More bits means higher precision)
[8 bytes are used for double precision]
Value of a Normal Number:

$$
(-1)^{S} \times(1.0+0 . M) \times 2^{(E-127)}
$$

## An example

| $S$ <br> $(31)$ |
| :--- |
| $E($ Exponent <br> $(30 \ldots 23)$ |
| 1 10001100 <br> $(22 \ldots 0)$  |

Value of a Normal Number:
$=(-1)^{\mathrm{S}} \times(1.0+0 . \mathrm{M}) \times \mathbf{2}^{(\mathrm{E}-127)}$
$=(-1)^{1} \times(1.0+0.1101100) \times 2^{(10001100-1111111)}$
$=-1.1101100 \times 2^{1101}=-11101100000000$
$=-15104.0$ ( in decimal)

## Representing 0.3

| $S$ | $E(E x p o n e n t)$ | $M($ Mantissa $)$ |
| :---: | :---: | :---: |
| $(31)$ | $(30 \ldots 23)$ | $(22 \ldots 0)$ |

> 0.3 (decimal)
> $=0.0100100100100100100100100 \ldots$
> $=1.00100100100100100100100100 \ldots \times 2^{-2}$
> $=1.00100100100100100100100100 \ldots \times 2^{125-127}$
> $=(-1)^{S} \times(1.0+0 . M) \times 2^{(E-127)}$

0 01111101 00100100100100100100100

What are the largest and smallest numbers that can be represented in this scheme?

Representing 0

| $S$ <br> $(31)$ | $E($ Exponent <br> $(30 \ldots 23)$ | $M(M a n t i s s a)$ <br> $(22 \ldots 0)$ |
| :---: | :---: | :---: |
| 0 | 00000000 | 000000000000000000000000 |
| 1 | 00000000 | 00000000000000000000000 |

Representing Inf ( $\propto$ )

| 0 | 11111111 | 00000000000000000000000 |
| :---: | :---: | :---: |
| 1 | 11111111 | 00000000000000000000000 |

Representing NaN (Not a Number)

| 0 | 11111111 | Non zero |
| :---: | :---: | :---: |
| 1 | 11111111 | Non zero |

## Representation of Characters

- Many applications have to deal with non-numerical data.
$\square$ Characters and strings
$\square$ There must be a standard mechanism to represent alphanumeric and other characters in memory
- Three standards in use:
$\square$ Extended Binary Coded Decimal Interchange Code (EBCDIC)
- Used in older IBM machines
$\square$ American Standard Code for Information Interchange (ASCII)
- Most widely used today
$\square$ UNICODE
- Used to represent all international characters.
- Used by Java


## ASCII Code

- Each individual character is numerically encoded into a unique 7-bit binary code
$\square$ A total of $2^{7}$ or 128 different characters
$\square$ A character is normally encoded in a byte (8 bits), with the MSB not been used.
- The binary encoding of the characters follow a regular ordering
$\square$ Digits are ordered consecutively in their proper numerical sequence (0 to 9)
$\square$ Letters (uppercase and lowercase) are arranged consecutively in their proper alphabetic order


## Some Common ASCII Codes

```
'A' :: 41 (H) }65\mathrm{ (D)
'B' :: 42 (H) 66 (D)
'Z' :: 5A (H) 90 (D)
'a' :: 61 (H) }97\mathrm{ (D)
'b' :: 62 (H) }98\mathrm{ (D)
'z' :: 7A (H) 122 (D)
```

```
`0’ :: 30 (H) 48 (D)
'1' :: 31 (H) }49\mathrm{ (D)
'9' :: }39\mathrm{ (H) }57\mathrm{ (D)
``` :: 28 (H) 40 (D)
‘+' :: 2B (H) 43 (D)
'?' :: 3F (H) }63\mathrm{ (D)
'In' :: 0A (H) 10 (D)
`\0' :: 00 (H) 00 (D)
```


## Character Strings

- Two ways of representing a sequence of characters in memory

| 5 | H | e | I | I | o |
| :---: | :---: | :---: | :---: | :---: | :---: |

$\square$ The first location contains the number of characters in the string, followed by the actual characters

$$
\begin{array}{|l|l|l|l|l|l|}
\hline \mathrm{H} & \mathrm{e} & \mathrm{I} & \mathrm{I} & \mathrm{o} & \perp \\
\hline
\end{array}
$$

$\square$ The characters follow one another, and is terminated by a special delimiter

## String Representation in C

- In C, the second approach is used
$\square$ The ' 10 ' character is used as the string delimiter
- Example:
"Hello" $\rightarrow$

| H | e | 1 | 1 | o | '10 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |

■ A null string "" occupies one byte in memory.
$\square$ Only the ' 10 ' character

