
Instruction Set Architecture
Consider x := y+z. (x, y, z are memory variables)

1-address instructions 2-address instructions

LOAD y (r :=y) ADD y,z (y := y+z)

ADD z (r:=r+z) MOVE x,y (x := y)

STORE x (x:=r)

3-address instructions

ADDx, y, z (x:= y+z)

0-address instructions (for stack machines)

push pop

PUSH y (on a stack)

PUSH z (on a stack)

ADD

POP x

Points to Consider
• Special-purpose or general purpose?

• Word size and instruction size?

[Now most instructions have 32-bits, and machines

allow operation on 64-bit data operands]

• Data types?

[Whatever the application demands]

• 0/1/2/3 address instructions, or a mix of them?

[Most modern designs allow 3-address instructions,

and pack them in a 32-bit frame]

• How many addressing modes, and which ones?

[Whatever the application demands]

• Register or memory operands?

[Register operands can be accessed faster, but you

cannot have too many registers]

• Instruction formats and instruction encoding.

[Modern designs have fewer formats and they are

less clumsy]

Instruction Types

BASIC INSTRUCTIONS

Data Movement LOAD, STORE, MOVE

Arithmetic & Logical ADD, SUB, AND, XOR, SHIFT

Branch JUMP (unconditional)

JZ, JNZ (conditional)

Procedure Call CALL, RETURN

Input Output Memory-mapped I/O*

Miscellaneous NOP, EI (enable interrupt)

SPECIAL INSTRUCTIONS

Multimedia instructions (MMX)

Many SIMD or vector instructions operate

simultaneously on 8 bytes | 4 half-words | 2 words

Digital Signal Processors include multiply-and-accumulate

(MAC) to efficiently compute the dot-product of vectors.

Load Store Architecture
Only LOAD and STORE instructions access the memory.

All other instructions use register operands. Used in all

RISC machines.

If X,Y,Z are memory operands, then X:= Y+Z will be

implemented as

LOAD r1, Y

LOAD r2, Z

ADD r1, r2, r3

STORE r3, X

Performance improves if the operand(s) can be kept in

registers for most of the time. Registers are faster than

memory.

Register allocation problem.

Common Addressing Modes

 opcode(O) reg (R) address (D)

Mode meaning

immediate Operand = D

direct Operand = M[D]

Register indirect

Memory indirect

Operand = M[R]

Operand = M[M[D]]

Auto-increment Operand = M[R]

R = R + n (n=1|2|4|8)

Auto-decrement R = R – n (n = 1|2|4|8)

Operand = M[R]

Indexed

Scale-index-base (SIB)

Operand = M[R+D]

Operand = M[s * R+D]

PC-relative Operand = M[PC+D]

SP-relative Operand = M[SP+D]

(Note: R = content of register R)

Question: Why so many addressing modes? Do we need all?

Op data type mode reg addr/data/offset

RISC or CISC?

Reduced Instruction Set Computers have a

small number of simple, frequently used

instructions.

Complex Instruction Set Computers include as

many instructions as users might need to write

efficient programs.

Features CISC RISC

Semantic Gap Low High

Code Size Small Large, but RAMs

are cheap!

Cost High Low

Speed Fast only if the
compiler generates

appropriate code

Slower, but the

problem is overcome

using more registers

and pipelining.

MIPS Architecture
MIPS follows the RISC architecture. It has 32 registers

r0-r31. Each register has 32-bits. The conventional use

of these registers is as follows:

register assembly name Comment

r0

r1

r2-r3

r4-r7

r8-r15

r16-r23

r24-r25

r26-r27

r28

r29

r30

r31

$zero

$at

$v0-$v1

$a0-$a3

$t0-$t7

$s0-$s7

$t8-$t9

$k0-$k1

$gp

$sp

$fp

$ra

Always 0

Reserved for assembler

Stores results

Stores arguments

Temporaries, not saved

Contents saved for use later

More temporaries, not saved

Reserved by operating system

Global pointer

Stack pointer

Frame pointer

Return address

Example assembly language programs

Example 1 f = g + h – i

Assume that f, g, h, i are assigned to $s0, $s1, $s2, $s3

add $t0, $s1, $s2 # register $t0 contains g + h

sub $s0, $t0, $s3 # f = g + h – i

Example 2. g = h + A[8]

Assume that g, h are in $s1, $s2. A is an array of words

the elements are stored in consecutive locations of the

memory. The base address is stored in $s3.

lw t0, 32($s3) # t0 gets A[8], 32= 4x8

add $s1, $s2, $t0 # g = h + A[8]

0

 200

Word 1 = 4 bytes s3

Word 2 = 4 bytes

Word 3 = 4 bytes

t0

 lw

Word 8 = 4 bytes CPU

 MEMORY

200

Machine language representations

Instruction “add” belongs to the R-type format.

6 5 5 5 5 6

src src dst

add $s1, $s2, $t0 (s1 := s2 + t0) will be coded as

 6 5 5 5 5 6

The function field is an extension of the opcode, and

they together determine the operation.

Note that “sub” has a similar format.

opcode rs rt rd shift amt function

 0 18 8 17 0 32

Instruction “lw” (load word) belongs to I-type format.

6 5 5 16

 base dst offset

lw $t0, 32($s3) will be coded as

 6 5 5 16

Both “lw” and “sw” (store word) belong to I-format.

opcode rs rt address

 35 19 8 32

Making decisions

if (i ==j) f = g + h; else f = g – h

Use bne = branch-nor-equal, beq = branch-equal, and j =

jump

Assume, f, g, h, are mapped into $s0, $s1, $s2, and

i, j are mapped into $s3, $s4

bne $s3, $s4, Else # goto Else when i=j

add $s0, $s1, $s2 # f = g + h

j Exit # goto Exit

Else: sub $s0, $s1, $s2 # f = g – h

Exit:

The program counter

Every machine has a program counter (called PC) that

points to the next instruction to be executed.

 1028

 1032

 1036 PC

 CPU

MEMORY

Ordinarily, PC is incremented by 4 after each instruction

is executed. A branch instruction alters the flow of

control by modifying the PC.

Instruction 1

Instruction 2

Instruction 3

Instruction 4

data

data

1028

Compiling a while loop

while (A[i] == k) i = i + j; array A

Initially $s3, $s4, $s5 contains i, j, k respectively.

Let $s6 store the base of the array A. Each element of A

is a 32-bit word.

Loop: add $t1, $s3, $s3 # $t1 = 2*i

add $t1, $t1, $t1 # $t1 = 4*i

add $t1, $t1, $s6 # $t1 contains address

of A[i]

lw $t0, 0($t1) # $t0 contains $A[i]

add $s3, $s3, $s4 # i = i + j

bne $t0, $s5, Exit # goto Exit if A[i] ≠ k

j Loop # goto Loop

Exit: <next instruction>

Note the use of pointers.

Compiling a switch statement

switch (k) {

case 0: f = i + j; break;

case 1: f = g + h; break;

case 2: f = g – h; break;

case 3: f = I – j; break;

}

Assume, $s0-$s5 contain f, g, h, i, j, k.

Assume $t2 contains 4.

slt $t3, $s5, $zero # if k<0 then $t3 = 1 else $t3=0

bne $t3, $zero, Exit # if k<0 then Exit

slt $t3, $s5, $t2 # if k<4 then $t3 = 1 else $t3=0

beq $t3, $zero, Exit # if k≥ 4 the Exit

What next? Jump to the right case!

jumptable

 register $t4

L0

L1

Exit

MEMORY

32-bit address L0

32-bit address L1

32-bit address L2

32-bit address L3

Base address
of the
jumptable

f = i + j

J Exit

f = g+h

j Exit

Here is the remainder of the program;

add $t1, $s5, $s5

add $t1, $t1, $t1

add $t1, $t1, $t4

lw $t0, 0($t1)

jr $t0

L0: add $s0, $s3, $s4

J Exit

L1: add $s0, $s1, $s2

J Exit

L2: sub $s0, $s1, $s2

J Exit

L3: sub $s0, $s3, $s4

Exit: <next instruction>

