
ECE4680 Lec 3 ISA.1 February 6, 2002

ECE 4680: Computer Architecture and Organization

Instruction Set Architecture

Different styles of ISA.
Basic issues when designing an ISA.

What a good ISA should be?

ECE4680 Lec 3 ISA.2 February 6, 2002

Instruction Set Design

instruction set

software

hardware

An instruction is a binary code, which specifies a basic
operation (e.g. add, subtract, and, or) for the computer

• Operation Code: defines the operation type
• Operands: operation source and destination

ECE4680 Lec 3 ISA.3 February 6, 2002

Instruction Set Architecture

ADD
SUBTRACT
AND
OR
COMPARE
.
.
.

01010
01110
10011
10001
11010
.
.
.

Programmer's View

Computer's View

CPU
Memory

I/O

Computer
Program
(Instructions)

Princeton (Von Neumann) Architecture
--- Data and Instructions mixed in same

memory ("stored program computer")

--- Program as data (dubious advantage)
--- Storage utilization
--- Single memory interface

Harvard Architecture
--- Data & Instructions in

separate memories

--- Has advantages in certain
high performance imple-
mentations

ECE4680 Lec 3 ISA.4 February 6, 2002

Basic Issues in Instruction Set Design
--- What operations (and how many) should be provided

LD/ST/INC/BRN sufficient to encode any computation
But not useful because programs too long!

--- How (and how many) operands are specified

Most operations are dyadic (eg, A <- B + C)
Some are monadic (eg, A <- ~B)

--- How to encode these into consistent instruction formats

Instructions should be multiples of basic data/address widths

Typical instruction set:

°°°° 32 bit word
°°°° basic operand addresses are 32 bits long
°°°° basic operands, like integers, are 32 bits long
°°°° in general case, instruction could reference 3 operands (A := B + C)

challenge: encode operations in a small number of bits!

ECE4680 Lec 3 ISA.5 February 6, 2002

Execution Cycle

Instruction
Fetch

Instruction
Decode

Operand
Fetch

Execute

Result
Store

Next
Instruction

Obtain instruction from program storage

Determine required actions and instruction size

Locate and obtain operand data

Compute result value or status

Deposit results in storage for later use

Determine successor instruction

ECE4680 Lec 3 ISA.6 February 6, 2002

What Must be Specified?

Instruction
Fetch

Instruction
Decode

Operand
Fetch

Execute

Result
Store

Next
Instruction

°°°° Instruction Format or Encoding
– how is it decoded?

°°°° Data type and Size
– what are supported

°°°° Location of operands and result – addressing mode
– where other than memory?
– how many explicit operands?
– how are memory operands located?
– which can or cannot be in memory?

°°°° Operations
– what are supported

°°°° Successor instruction – flow control
– jumps, conditions, branches

- fetch-decode-execute is implicit!

ECE4680 Lec 3 ISA.7 February 6, 2002

Topics to be covered

°°°° Instruction Format or Encoding
– how is it decoded?

°°°° Data type and Size
– what are supported

°°°° Location of operands and result – addressing mode
– where other than memory?
– how many explicit operands?
– how are memory operands located?
– which can or cannot be in memory?

°°°° Operations
– what are supported

°°°° Successor instruction – flow control
– jumps, conditions, branches

We will discuss the following topics
which determines the Complexity of IS.

ECE4680 Lec 3 ISA.8 February 6, 2002

Basic ISA Classes
Accumulator: (earliest machines)

1 address add A acc ←←←←

 acc + mem[A]

1+x address addx A acc ←←←←

 acc + mem[A + x]

Stack: (HP calculator, Java virtual machines)

0 address add tos ←←←←

 tos + next

General Purpose Register: (e.g. Intel 80x86, Motorola 68xxx)

2 address add A B EA(A) ←←←←

 EA(A) + EA(B)

3 address add A B C EA(A) ←←←←

 EA(B) + EA(C)

Load/Store: (e.g. SPARC, MIPS, PowerPC)

3 address add Ra Rb Rc Ra ←←←←

 Rb + Rc

load Ra Rb Ra ←←←←

 mem[Rb]

store Ra Rb mem[Rb] ←←←←

 Ra

Comparison:
Bytes per instruction? Number of Instructions? Cycles per instruction?

ECE4680 Lec 3 ISA.9 February 6, 2002

Comparing Instructions

Comparing Number of Instructions

° Code sequence for C = A + B for four classes of instruction sets:
Stack Accumulator Register Register

(register-memory) (load-store)
Push A Load A Load R1,A Load R1,A
Push B Add B Add R1,B Load R2,B
Add Store C Store C, R1 Add R3,R1,R2
Pop C Store C,R3

ECE4680 Lec 3 ISA.10 February 6, 2002

°
Since 1975 all machines use general purpose registers
(Java Virtual Machine adopts Stack architecture)

°Advantages of registers
• registers are faster than memory
• registers are easier for a compiler to use

- e.g., (A*B) – (C*D) – (E*F) can do multiplies in any order
vs. stack

• registers can hold variables
- memory traffic is reduced, so program is sped up

(since registers are faster than memory)
- code density improves (since register named with fewer bits

than memory location)

General Purpose Registers Dominate

ECE4680 Lec 3 ISA.11 February 6, 2002

More About register?

� integrated together in process chip.

� In top level in memory hierarchy.

�Faster to access and simpler to use.

� Special role in MIPS ISA: only registers not symbolic
variables can be In instructions.

� The number of registers can not be too more, not be
too less.

� Effective use of registers is a key to program
performance.

MBus Module

External Cache

DatapathRegisters

Internal
Cache Control

SuperSPARC Processor

ECE4680 Lec 3 ISA.12 February 6, 2002

Examples of Register Usage

Number of memory addresses per typical ALU instruction

Maximum number of operands per typical ALU instruction

Examples

0 3 SPARC, MIPS, Precision Architecture, Power PC

1 2 Intel 80x86, Motorola 68000

2 2 VAX (also has 3-operand formats)

3 3 VAX (also has 2-operand formats)

ECE4680 Lec 3 ISA.13 February 6, 2002

Example:

In VAX: ADDL (R9), (R10), (R11)
mem[R9] <-- mem[R10] + mem[R11]

In MIPS: lw R1, (R10); load a word
lw R2, (R11)
add R3, R1, R2; R3 <-- R1+R2
sw R3, (R9); store a word

ECE4680 Lec 3 ISA.14 February 6, 2002

Pros and Cons of Number of Memory Operands/Operands
Register-register: 0 memory operands/instr, 3 (register) operands/instr

＋＋＋＋ Simple, fixed-length instruction encoding. Simple code generation
model. Instructions take similar numbers of clocks to execute

－－－－Higher instruction count than architectures with memory
references in instructions. Some instructions are short and bit
encoding may be wasteful.

Register-memory (1,2)
＋＋＋＋Data can be accessed without loading first. Instruction format

tends to be easy to encode and yields good density.
－－－－Operands are not equivalent since a source operand in a binary

operation is destroyed. Encoding a register number and a memory
Address　　　　in each instruction may restrict the number of registers.
Clocks per instruction varies by operand location.

Memory-memory (3,3)
＋＋＋＋Most compact. Doesn't waste registers for temporaries.
－－－－Large variation in instruction size, especially for three-operand

instructions. Also, large variation in work per instruction. Memory
accesses create memory bottleneck.

ECE4680 Lec 3 ISA.15 February 6, 2002

Summary on Instruction Classes

° Expect new instructin set architecture to use general purpose register

° Pipelining => Expect it to use load store variant of GPR ISA

ECE4680 Lec 3 ISA.16 February 6, 2002

Memory addressing

• BYTE Addressing:
– Since 1980, almost every machine uses

addresses to level of 8-bits
• Two Questions for design of ISA

– For a 32-bit word, read it as four loads of bytes
from sequential byte addresses or as one load
work from a single byte address. How byte
address map onto words ?

– Can a word be placed on any byte boundary?

ECE4680 Lec 3 ISA.17 February 6, 2002

Addressing Objects

Big Endian: address of most significant IBM 360/370,
Motorola 68k, MIPS, Sparc, HP PA

Little Endian: address of least significant Intel 80x86, DEC Vax

msb lsb
3 2 1 0 little endian word 0:

0 1 2 3 big endian word 0:

Alignment: require that objects fall on address that is multiple of
their size. (p 112)

Word:

ECE4680 Lec 3 ISA.18 February 6, 2002

BIG Endian versus Little Endian (P113 & A-46)

Example 1: Memory layout of a number #ABCD

In Big Endian: CD
AB

In Little Endian: AB
CD

Example 2: Memory layout of a number #FF00

$1001
$1000

$1001
$1000

ECE4680 Lec 3 ISA.19 February 6, 2002

Byte Swap Problem

GH
EF
CD

AB 0

1
2
3

increasing
byte
address

Big Endian

AB
CD
EF

GH 0

1
2
3

Little Endian

Each system is self-consistent, but causes problems when they need
communicate!

Memory layout of a number of ABCDEFGH

ECE4680 Lec 3 ISA.20 February 6, 2002

Addressing Modes
Addressing mode Example Meaning

Register Add R4,R3 R4 ←←←← R4+R3

Immediate Add R4,#3 R4 ←←←← R4+3

Displacement Add R4,100(R1) R4 ←←←← R4+Mem[100+R1]

Register indirect Add R4,(R1) R4 ←←←← R4+Mem[R1]

Indexed Add R3,(R1+R2) R3 ←←←← R3+Mem[R1+R2]

Direct or absolute Add R1,(1001) R1 ←←←← R1+Mem[1001]

Memory indirect Add R1,@(R3) R1 ←←←← R1+Mem[Mem[R3]]

Auto-increment Add R1,(R2)+ R1 ←←←← R1+Mem[R2]; R2 ←←←← R2+d

Auto-decrement Add R1,–(R2) R2 ←←←← R2–d; R1 ←←←← R1+Mem[R2]

Scaled Add R1,100(R2)[R3] R1 ←←←← R1+Mem[100+R2+R3*d]

ECE4680 Lec 3 ISA.21 February 6, 2002

Addressing Mode:

• Addressing modes have the ability to
significantly reduce instruction counts

• They also add to the complexity of
building a machine

ECE4680 Lec 3 ISA.22 February 6, 2002

Addressing Mode Usage
3 programs avg, 17% to 43%

--- Register deferred (indirect): 13% avg, 3% to 24%

--- Scaled: 7% avg, 0% to 16%

--- Memory indirect: 3% avg, 1% to 6%

--- Misc: 2% avg, 0% to 3%

ECE4680 Lec 3 ISA.23 February 6, 2002

Displacement Address Size

0%

5%

10%

15%

20%

25%

30%

0 1 2 3 4 5 6 7 8 9

10 11 12 13 14 15

Int. Avg. FP Avg.

� Average of 5 programs from SPECint92 and Average of 5 programs
from SPECfp92

� X-axis is in powers of 2: => addresses > 23(8) and < 24 (16)

� 1% of addresses > 16-bits

ECE4680 Lec 3 ISA.24 February 6, 2002

Immediate Size

• 50% to 60% fit within 8 bits

• 75% to 80% fit within 16 bits

ECE4680 Lec 3 ISA.25 February 6, 2002

Addressing Summary

•Data Addressing modes that are important:
Displacement, Immediate, Register Indirect

•Displacement size should be 12 to 16 bits

•Immediate size should be 8 to 16 bits

ECE4680 Lec 3 ISA.26 February 6, 2002

Typical Operations
Data Movement Load (from memory)

Store (to memory)
memory-to-memory move
register-to-register move
input (from I/O device)
output (to I/O device)
push, pop (to/from stack)

Arithmetic integer (binary + decimal) or FP
Add, Subtract, Multiply, Divide

Logical not, and, or, set, clear

Shift shift left/right, rotate left/right

Control (Jump/Branch) unconditional, conditional

Subroutine Linkage call, return
Interrupt trap, return
Synchronization test & set (atomic r-m-w)
String search, translate

ECE4680 Lec 3 ISA.27 February 6, 2002

Top 10 80x86 Instructions

° Rank instruction Integer Average Percent total executed
1 load 22%
2 conditional branch 20%
3 compare 16%
4 store 12%
5 add 8%
6 and 6%
7 sub 5%
8 move register-register 4%
9 call 1%
10 return 1%

Total 96%
° Simple instructions dominate instruction frequency

ECE4680 Lec 3 ISA.28 February 6, 2002

Methods of Testing Condition
°°°° Condition Codes

Processor status bits are set as a side-effect of arithmetic
instructions (possibly on Moves) or explicitly by compare or
test instructions.
ex: add r1, r2, r3

bz label

°°°° Condition Register
Ex: cmp r1, r2, r3; compare r2 with r3, 0 or 1 is stored in r1

bgt r1, label; branch on greater

°°°° Compare and Branch
Ex: bgt r1, r2, label; if r1 > r2, then go to label

ECE4680 Lec 3 ISA.29 February 6, 2002

Condition Codes
Setting CC as side effect can reduce the # of instructions

X: .
.
.

SUB r0, #1, r0
BRP X

X: .
.
.

SUB r0, #1, r0
CMP r0, #0
BRP X

versus

But also has disadvantages:

--- not all instructions set the condition codes
which do and which do not often confusing!
e.g., shift instruction sets the carry bit

--- dependency between the instruction that sets the CC and the one
that tests it: to overlap their execution, may need to separate them
with an instruction that does not change the CC

ifetch read compute write

ifetch read compute write

New CC computedOld CC read

ECE4680 Lec 3 ISA.30 February 6, 2002

Branches
--- Conditional control transfers

Four basic conditions:
N -- negative
Z -- zero

V -- overflow
C -- carry

Sixteen combinations of the basic four conditions:
Always
Never
Not Equal
Equal
Greater
Less or Equal
Greater or Equal
Less
Greater Unsigned
Less or Equal Unsigned
Carry Clear
Carry Set
Positive
Negative
Overflow Clear
Overflow Set

Unconditional
NOP
~Z
Z
~[Z + (N V)]
Z + (N V)
~(N V)
N V
~(C + Z)
C + Z
~C
C
~N
N
~V
V

⊗
⊗

⊗
⊗

ECE4680 Lec 3 ISA.31 February 6, 2002

Conditional Branch Distance

Bits of Branch Dispalcement

0%

5%

10%

15%

20%

25%

30%

35%

40%

0 1 2 3 4 5 6 7 8 9

10 11 12 13 14 15

Int. Avg. FP Avg.

• Distance from branch in instructions 2i => Š ±±±±2i-1

• 25% of integer branches are > 22

ECE4680 Lec 3 ISA.32 February 6, 2002

Conditional Branch Addressing

• PC-relative since most branches at least 8 bits
suggested (±±±± 128 instructions)

• Compare Equal/Not Equal most important for integer
programs

Frequency of comparison
types in branches

0% 20% 40% 60% 80% 100%

EQ/NE

GT/LE

LT/GE

37%

23%

40%

86%

7%

7%

Int Avg.

FP Avg.

ECE4680 Lec 3 ISA.33 February 6, 2002

Operation Summary

• Support these simple instructions, since they
will dominate the number of instructions executed:

load,
store,
add,
subtract,
move register-register,
and,
shift,
compare equal, compare not equal,
branch (with a PC-relative address at least 8-bits long),
jump,
call,
return;

ECE4680 Lec 3 ISA.34 February 6, 2002

Data Types
Bit: 0, 1

Bit String: sequence of bits of a particular length
4 bits is a nibble
8 bits is a byte

16 bits is a half-word
32 bits is a word

Character:
ASCII 7 bit code
EBCDIC 8 bit code (IBM)
UNICODE 16 bit code (Java)

Decimal:
digits 0-9 encoded as 0000b thru 1001b
two decimal digits packed per 8 bit byte

Integers:
Sign & Magnitude: 0X vs. 1X
1's Complement: 0X vs. 1(~X)
2's Complement: 0X vs. (1's comp) + 1

Floating Point:
Single Precision
Double Precision
Extended Precision

Positive #'s same in all
First 2 have two zeros
Last one usually chosen

M x RE How many +/- #'s?
Where is decimal pt?
How are +/- exponents

represented?

exponent

base
mantissa

ECE4680 Lec 3 ISA.35 February 6, 2002

Operand Size Usage

Frequency of reference by size

0% 20% 40% 60% 80%

Byte

Halfword

Word

Doubleword

0%

0%

31%

69%

7%

19%

74%

0%

Int Avg.

FP Avg.

•Support these data sizes and types:
8-bit, 16-bit, 32-bit integers and
32-bit and 64-bit IEEE 754 floating point numbers

ECE4680 Lec 3 ISA.36 February 6, 2002

Instruction Format

• If have many memory operands per instructions and
many addressing modes, need an Address Specifier
per operand

• If have load-store machine with 1 address per instr.
and one or two addressing modes, then just encode
addressing mode in the opcode

ECE4680 Lec 3 ISA.37 February 6, 2002

Generic Examples of Instruction Formats

Variable:

Fixed:

Hybrid:

…

ECE4680 Lec 3 ISA.38 February 6, 2002

Summary of Instruction Formats

• If code size is most important,
use variable length instructions

•If performance is most important,
use fixed length instructions

ECE4680 Lec 3 ISA.39 February 6, 2002

Instruction Set Metrics

Design-time metrics:
°°°° Can it be implemented, in how long, at what cost?
°°°° Can it be programmed? Ease of compilation?

Static Metrics:
°°°° How many bytes does the program occupy in memory?

Dynamic Metrics:
°°°° How many instructions are executed?
°°°° How many bytes does the processor fetch to execute the program?
°°°° How many clocks are required per instruction?
°°°° How "lean" a clock is practical?

Best Metric: Time to execute the program!

NOTE: this depends on instructions set, processor organization, and
compilation techniques.

CPI

Inst. Count Cycle Time

ECE4680 Lec 3 ISA.40 February 6, 2002

Lecture Summary: ISA

° Use general purpose registers with a load-store architecture;

° Support these addressing modes: displacement (with an address offset
size of 12 to 16 bits), immediate (size 8 to 16 bits), and register deferred;

° Support these simple instructions, since they will dominate the number
of instructions executed: load, store, add, subtract, move register-
register, and, shift, compare equal, compare not equal, branch (with a
PC-relative address at least 8-bits long), jump, call, and return;

° Support these data sizes and types: 8-bit, 16-bit, 32-bit integers and 64-
bit IEEE 754 floating point numbers;

° Use fixed instruction encoding if interested in performance and use
variable instruction encoding if interested in code size;

° Provide at least 16 general purpose registers plus separate floating-
point registers, be sure all addressing modes apply to all data transfer
instructions, and aim for a minimalist instruction set.

