
Carnegie Mellon

1

Design of Digital Circuits 2014
Srdjan Capkun
Frank K. Gürkaynak

Adapted from Digital Design and Computer Architecture, David Money Harris & Sarah L. Harris ©2007 Elsevier

http://www.syssec.ethz.ch/education/Digitaltechnik_14

Arithmetic Circuits

Carnegie Mellon

2

In This Lecture

 Why are arithmetic circuits so important

 Adders

 Adding two binary numbers

 Adding more than two binary numbers

 Circuits Based on Adders

 Multipliers

 Functions that do not use adders

 Arithmetic Logic Units

Carnegie Mellon

3

Motivation: Arithmetic Circuits

 Core of every digital circuit

 Everything else is side-dish, arithmetic circuits are the heart of the digital
system

 Determines the performance of the system

 Dictates clock rate, speed, area

 If arithmetic circuits are optimized performance will improve

 Opportunities for improvement

 Novel algorithms require novel combinations of arithmetic circuits, there
is always room for improvement

Carnegie Mellon

4

Example: ARM Microcontroller

 Most popular embedded
micro controller.

 Contains:

 Multiplier

 Accumulator

 ALU/Adder

 Shifter

 Incrementer

Carnegie Mellon

5

Example: ARM Instructions

Carnegie Mellon

6

Arithmetic Based Instructions of ARM

Carnegie Mellon

7

Types of Arithmetic Circuits

 In order of complexity:

 Shift / Rotate

 Compare

 Increment / Decrement

 Negation

 Addition / Subtraction

 Multiplication

 Division

 Square Root

 Exponentation

 Logarithmic / Trigonometric Functions

Carnegie Mellon

8

Relation Between Arithmetic Operators

Carnegie Mellon

9

Addition

 Addition is the most important operation in computer
arithmetic. Our topics will be:

 Adding 1-bit numbers : Counting bits

 Adding two numbers : Basics of addition

 Circuits based on adders : Subtractors, Comparators

 Adding multiple numbers : Chains of Adders

 Later we will also talk about fast adder architectures

Carnegie Mellon

10

Half-Adder (2,2) Counter

 The Half Adder (HA) is the simplest arithmetic block

 It can add two 1-bit numbers, result is a 2-bit number

 Can be realized easily

Carnegie Mellon

11

Full-Adder (3,2) Counter

 The Full Adder (FA) is the essential
arithmetic block

 It can add three 1-bit numbers, result
is a 2-bit number

 There are many realizations both at
gate and transistor level.

 Since it is used in building many
arithmetic operations, the
performance of one FA influences the
overall performance greatly.

Carnegie Mellon

12

Adding Multiple 1-bit Numbers

Carnegie Mellon

13

Adding Multiple Digits

 Similar to decimal addition

 Starting from the right, each digit is added

 The carry from one digit is added to the digit to the left

Carnegie Mellon

14

Adding Multiple Digits

 Similar to decimal addition

 Starting from the right, each digit is added

 The carry from one digit is added to the digit to the left

Carnegie Mellon

15

Ripple Carry Adder (RCA)

Carnegie Mellon

16

Curse of the Carry

The most significant outputs of the adder
depends on the least significant inputs

Carnegie Mellon

17

Adding Multiple Numbers

 Multiple fast adders not a good idea

 If more than 2 numbers are to be added, multiple fast adders are not
really efficient

 Use an array of ripple carry adders

 Popular and efficient solution

 Use carry save adder trees

 Instead of using carry propagate adders (the adders we have seen so far),
carry save adders are used to reduce multiple inputs to two, and then a
single carry propagate adder is used to sum up.

Carnegie Mellon

18

Array of Ripple Carry Adders

Carnegie Mellon

19

Carry Save Principle

 Reduces three numbers to two with a single gate delay

C + S = E + F + G

Carnegie Mellon

20

Carry Save Principle

Z = D + E + F + G + H

 An array of carry save
adders reduce the inputs to
two

 A final (fast) carry propagate
adder (CPA) merges the two
numbers

 Performance mostly
dictated by CPA

Carnegie Mellon

21

Multipliers

 Largest common arithmetic block

 Requires a lot of calculation

 Has three parts

 Partial Product Generation

 Carry Save Tree to reduce partial products

 Carry Propagate Adder to finalize the addition

 Adder performance (once again) is important

 Many optimization alternatives

Carnegie Mellon

22

Decimal Multiplication

Carnegie Mellon

23

Binary Multiplication

Carnegie Mellon

24

For n-bit Multiplier m-bit Multiplicand

 Generate Partial Products

 For each bit of the multiplier the partial product is either

 when ‘0’: all zeroes

 when ‘1’: the multiplicand

achieved easily by AND gates

 Reduce Partial Products

 This is the job of a carry save adder

 Generate the Result (n + m bits)

 This is a large, fast Carry Propagate Adder

Carnegie Mellon

25

Parallel Multiplier

Carnegie Mellon

26

Parallel Multiplier

Carnegie Mellon

27

Operations Based on Adders

 Several well-known arithmetic operation are based on adders:

 Negator

 Incrementer

 Subtracter

 Adder Subtracter

 Comparator

Carnegie Mellon

28

Negating Two’s Complement Numbers

 To negate a two’s
complement number

-A = A + 1

 All bits are inverted

 One is added to the result

 Can be realized easily by an
adder.

 B input is optimized away

Carnegie Mellon

29

Incrementer

 B input is zero

 Carry In (Cin) of the adder
can be used as the
Increment (Inc) input

 Decrementer similar in
principle

Carnegie Mellon

30

Subtracter

 B input is inverted

 Cin of the adder is used to
complement B

Carnegie Mellon

31

Subtracter

 B input is inverted

 Cin of the adder is used to
complement B

 It can be made
programmable so that both
additions and subtractions
can be performed at the
same time

Carnegie Mellon

32

Comparator

 Based on a Subtractor

(A = B) = EQ

(A != B) = EQ

(A > B) = GE EQ

(A >= B) = GE

(A < B) = GE

(A <= B) = GE + EQ

Carnegie Mellon

33

Functions Realized Without Adders

 Not all arithmetic functions are realized by using adders

 Shift / Rotate Units

 Binary Logic functions are also used by processors

 AND

 OR

 XOR

 NOT

These are implemented very easily

Carnegie Mellon

34

Shifters

 Logical shifter: shifts value to left or right and fills empty
spaces with 0’s

 Ex: 11001 >> 2 = ??

 Ex: 11001 << 2 = ??

 Arithmetic shifter: same as logical shifter, but on right shift,
fills empty spaces with the old most significant bit (msb).

 Ex: 11001 >>> 2 = ??

 Ex: 11001 <<< 2 = ??

 Rotator: rotates bits in a circle, such that bits shifted off one
end are shifted into the other end

 Ex: 11001 ROR 2 = ??

 Ex: 11001 ROL 2 = ??

Carnegie Mellon

35

Shifters

 Logical shifter: shifts value to left or right and fills empty
spaces with 0’s

 Ex: 11001 >> 2 = 00110

 Ex: 11001 << 2 = 00100

 Arithmetic shifter: same as logical shifter, but on right shift,
fills empty spaces with the old most significant bit (msb).

 Ex: 11001 >>> 2 = 11110

 Ex: 11001 <<< 2 = 00100

 Rotator: rotates bits in a circle, such that bits shifted off one
end are shifted into the other end

 Ex: 11001 ROR 2 = 01110

 Ex: 11001 ROL 2 = 00111

Carnegie Mellon

36

Shifter Design

A
3:0

Y
3:0

shamt
1:0

>>

2

4 4

A
3

A
2

A
1

A
0

Y
3

Y
2

Y
1

Y
0

shamt
1:0

00

01

10

11

S
1:0

S
1:0

S
1:0

S
1:0

00

01

10

11

00

01

10

11

00

01

10

11

2

Carnegie Mellon

37

Shifters as Multipliers and Dividers

 A left shift by N bits multiplies a number by 2N

 Ex: 00001 << 2 = 00100 (1 × 22 = 4)

 Ex: 11101 << 2 = 10100 (-3 × 22 = -12)

 The arithmetic right shift by N divides a number by 2N

 Ex: 01000 >>> 2 = 00010 (8 ÷ 22 = 2)

 Ex: 10000 >>> 2 = 11100 (-16 ÷ 22 = -4)

Carnegie Mellon

38

Other Functions

 We have covered 90% of the arithmetic functions commonly
used in a CPU

 Division

 Dedicated architectures not very common

 Mostly implemented by existing hardware (multipliers, subtractors
comparators) iteratively

 Exponential, Logarithmic, Trigonometric Functions

 Dedicated hardware (less common)

 Numerical approximations:

exp(x) = 1 + x2/2! + x3/3! + …

 Look-up tables (more common)

Carnegie Mellon

39

Arithmetic Logic Unit

The reason why we study digital circuits:
the part of the CPU that does something (other than copying data)

 Defines the basic operations that the CPU can perform directly

 Other functions can be realized using the existing ones iteratively. (i.e.
multiplication can be realized by shifting and adding)

 Mostly, a collection of resources that work in parallel.

 Depending on the operation one of the outputs is selected

Carnegie Mellon

40

Example: Arithmetic Logic Unit (ALU), pg243

ALU

N N

N

3

A B

Y

F

F2:0 Function

000 A & B

001 A | B

010 A + B

011 not used

100 A & ~B

101 A | ~B

110 A - B

111 SLT

Carnegie Mellon

41

Example: ALU Design

+

2 01

A B

C
out

Y

3

01

F
2

F
1:0

[N-1] S

NN

N

N

N NNN

N

2

Z
e

ro

E
x
te

n
d

F2:0 Function

000 A & B

001 A | B

010 A + B

011 not used

100 A & ~B

101 A | ~B

110 A - B

111 SLT

Carnegie Mellon

42

Set Less Than (SLT) Example

 Configure a 32-bit ALU for the set if
less than (SLT) operation. Suppose
A = 25 and B = 32.

 A is less than B, so we expect Y to be the
32-bit representation of 1
(0x00000001).

+

2 01

A B

C
out

Y

3

01

F
2

F
1:0

[N-1] S

NN

N

N

N NNN

N

2

Z
e

ro

E
x
te

n
d

Carnegie Mellon

43

Set Less Than (SLT) Example

 Configure a 32-bit ALU for the set if
less than (SLT) operation. Suppose
A = 25 and B = 32.

 A is less than B, so we expect Y to be the
32-bit representation of 1
(0x00000001).

 For SLT, F2:0 = 111.

 F2 = 1 configures the adder unit as a
subtracter. So 25 - 32 = -7.

 The two’s complement representation of
-7 has a 1 in the most significant bit, so
S31 = 1.

 With F1:0 = 11, the final multiplexer
selects
Y = S31 (zero extended) = 0x00000001

+

2 01

A B

C
out

Y

3

01

F
2

F
1:0

[N-1] S

NN

N

N

N NNN

N

2

Z
e

ro

E
x
te

n
d

Carnegie Mellon

44

What Did We Learn?

 How can we add, subtract, multiply binary numbers

 What other circuits depend on adders

 Subtracter

 Incrementer

 Comparator

 Important part of Multiplier

 Other functions (shifting)

 How is an Arithmetic Logic Unit constructed

