Arithmetic Circuits

Design of Digital Circuits 2014
Srdjan Capkun
Frank K. Gurkaynak

http://www.syssec.ethz.ch/education/Digitaltechnik 14

Adapted from Digital Design and Computer Architecture, David Money Harris & Sarah L. Harris ©2007 Elsevier

In This Lecture

m Why are arithmetic circuits so important

m Adders

= Adding two binary numbers
= Adding more than two binary numbers
= Circuits Based on Adders

m Multipliers
m Functions that do not use adders

m Arithmetic Logic Units

Motivation: Arithmetic Circuits

m Core of every digital circuit

= Everything else is side-dish, arithmetic circuits are the heart of the digital
system

m Determines the performance of the system
= Dictates clock rate, speed, area

= |f arithmetic circuits are optimized performance will improve

m Opportunities for improvement

= Novel algorithms require novel combinations of arithmetic circuits, there
is always room for improvement

Example: ARM Microcontroller

1AE1:1]

m Most popular embedded -
micro controller.
Exoegtion % | DINE1:0]
m Contains: s ==
. . PSRM ARTO| imm[[B[310] T31:0] =
= Multiplier = BJ

= Accumulator 'i ﬁku—' i —
| ALU/Adder ADatal..] _‘:.;un.p|; BDatal.]

= Shifter N o= 1
LW ll\leL repl.
. =

Incrementer o] pne] [om

DA31:0] WDATA[31:0] ROATA[31:0]

INS TR 1:0]

IDScan

Imstruction

logic

Example: ARM Instructions

MOV RSB CMP SMLAW B LDRSB LD,STRD
MVN RSC CMN CLZ BL LD,STRH PLD
MRS MUL QADD TST BX LDRSH SWP
MSR MLA QDADD TEQ BLX LD,STM SWI
ADD UMULL QsuB AND LD,STR LD,STMIB BKPT
ADC UMLAL SMUL XOR LD,STRT LD,STMIA CDP
SUB SMULL SMULA OR LD,STRB LD,STMDB MRC,MCR
SBC SMLAL SMULW BIC LD,STRBT LD,STMDA MRRC,MCRR

Arithmetic Based Instructions of ARM

MOy RSB CMP SMLAW B LIRSS LRBTRE
v RSC CMN CLZ BL LI BTRE NS
MRS MUL QADD TST BX LERSH SwrE
MSR MLA QDADD TEQ BLX LESTE DVR
ADD UMULL QsSuUB ARD LBTR LE BTRHE BRET
ADC UMLAL SMUL HOR L ETRY LB BTRHA SR
SuB SMULL SMULA DR LRSIRE LOLSTHRE HRCMOR
SBC SMLAL SMuULwW BIC LESTREY LODSTRDA BIREC MORR

Types of Arithmetic Circuits

m In order of complexity:

Shift / Rotate

Compare

Increment / Decrement
Negation

Addition / Subtraction
Multiplication

Division

Square Root
Exponentation

Logarithmic / Trigonometric Functions

Relation Between Arithmetic Operators

é)
Shift/Rotate
Compare .,
t.'.
‘4 Inc/Decrement |=f==q== ‘i Negate
Ty
Add/Sub
AT e
Division @~ [rermmmns Square Root
Exponentiation
Log/Trig Complexity

N\ J

Addition

m Addition is the most important operation in computer
arithmetic. Our topics will be:

= Adding 1-bit numbers : Counting bits

= Adding two numbers : Basics of addition
= Circuits based on adders : Subtractors, Comparators

= Adding multiple numbers : Chains of Adders

m Later we will also talk about fast adder architectures

Half-Adder (2,2) Counter

m The Half Adder (HA) is the simplest arithmetic block
m It can add two 1-bit numbers, result is a 2-bit number

m Can be realized easily

A B C S A B
0 0 o0 0 l l
0 1 0 1 C,~— HA
1 0 0 1

1 1 1 0 l

Full-Adder (3,2) Counter

m The Full Adder (FA) is the essential
arithmetic block

m It can add three 1-bit numbers, result
is a 2-bit number

m There are many realizations both at
gate and transistor level.

m Since it is used in building many
arithmetic operations, the
performance of one FA influences the
overall performance greatly.

Adding Multiple 1-bit Numbers

(’

as as a, a; a, a, Qa a; as a, a, a, a,; a,)
FA: J FA J FA: J
FA | {.£A |
FA FA

.Jf' Ii’ l

! 327 Sy Sy
FA’
|7l linear structure tree structure

Adding Multiple Digits
m Similar to decimal addition

m Starting from the right, each digit is added

m The carry from one digit is added to the digit to the left

o | o
e
o |~
= o o
o |+~ o
o |~
~ |l o o
o |~

Decimal Binary

= =N

= | = o

Adding Multiple Digits
m Similar to decimal addition

m Starting from the right, each digit is added

m The carry from one digit is added to the digit to the left

)
(14 1% Il I I

59:18 DlllDDlDllD

+ i4i3i7] + 0i0ililioililioilio 1

1 3 5 & 1 01 01 001 011

Decimal Binary

Ripple Carry Adder (RCA)

A B

C, ~— RCA — C,

Curse of the Carry

The most significant outputs of the adder
depends on the least significant inputs

An Bn An—1 Bn—1 A1
-

Adding Multiple Numbers

m Multiple fast adders not a good idea

= |f more than 2 numbers are to be added, multiple fast adders are not
really efficient

m Use an array of ripple carry adders

= Popular and efficient solution

m Use carry save adder trees

" |nstead of using carry propagate adders (the adders we have seen so far),
carry save adders are used to reduce multiple inputs to two, and then a
single carry propagate adder is used to sum up.

Array of Ripple Carry Adders

I

FA |

I

Cs

N

FA |

FA |

11

:

C,

N

gm="

FA |

FA |

C

N

W

FA |

W

Carry Save Principle

LI 1

FA | FA | ' FA | FA |

m Reduces three numbers to two with a single gate delay

C+S=E+F+AG

Carry Save Principle

Z=D+E+F+ G+ H

m An array of carry save
adders reduce the inputs to
two

m A final (fast) carry propagate
adder (CPA) merges the two
numbers

m Performance mostly
dictated by CPA

C,

CSA2

S,

Multipliers

m Largest common arithmetic block

= Requires a lot of calculation

m Has three parts
= Partial Product Generation
= Carry Save Tree to reduce partial products

= Carry Propagate Adder to finalize the addition
m Adder performance (once again) is important

m Many optimization alternatives

Decimal Multiplication

2 4 1 7
« 1 4 0 3
7 2 5 1
0 0 00 Partial
2k Products
+ 2 4 1 7
3 3 9 1 0 5 1

Binary Multiplication

o 1 0 1 1 0 O 1

O 01 1 0 1 1 1

X

O 1 0 1 1 0 0 1
O 1 0 1 1 0 O 1
O 1 0 1 1 0 0 1
O 0 0 0 0 0 O O
O 1 0 1 1 O 0 1
O 1 0 1 1 0 0 1
O 0 0 0 0 0 O O

O 0 0 0 0 0 O O
o 0o 0o 1. 0 01 1 0 O O 1 1 1 1 1

Partial
Products

|

For n-bit Multiplier m-bit Multiplicand

m Generate Partial Products

= For each bit of the multiplier the partial product is either
= when ‘0’: all zeroes
= when ‘1’: the multiplicand

achieved easily by AND gates

m Reduce Partial Products

" This is the job of a carry save adder

m Generate the Result (n + m bits)
= Thisis a large, fast Carry Propagate Adder

Parallel Multiplier

.

>
o

AB
. _ . _ .
*C!J FA FA
AB AB AB
/ | / |
] I] C'J_/ g
FA (] i FJ_/
f A.B, IJ A.B, A.B,
FA HA FA FA
P, P, P, P,

HA

Parallel Multiplier

3

2

B
AR, - AB, AgBq
- P,
~C|Ji_ HA C'Ji HA C'L HA
AB, —AE; —AB —
- P,
~C|Ji_ FA :'Ji FA C'L FA
A, —AE. —As —AE,
P,
~C|Ji FA | ':‘ FA | ':‘ FA
A, —e. —he —AE,
P,
\ FA FA HA

Operations Based on Adders

m Several well-known arithmetic operation are based on adders:

" Negator

" Incrementer

= Subtracter

= Adder Subtracter

" Comparator

Negating Two’s Complement Numbers

A
0

-~ Adder -«

To negate atwo’s
complement number

A =A+1
All bits are inverted
One is added to the result

Can be realized easily by an
adder.

B input is optimized away

Incrementer

m Binputiszero

A INC
m Carry In (C,,) of the adder
can be used as the
Increment (Inc) input
- Adder O De.crt?menter similar in
Cn::- principle

A+INC

Subtracter
A

m Binputisinverted

B
l m C_of the adder is used to
Y complement B
1
< Adder
C,
Z=A-B

Subtracter

A B SUB m Binputis inverted

m C_of the adder is used to
complement B

m It can be made
programmable so that both
additions and subtractions
can be performed at the
same time

-~ Adder

Z=A%B

Comparator

m Based on a Subtractor

A B
I (A = B) = EQ
:

(A != B) = EQ

(A > B) = GE EQ
GE-C. Adder (A >= B) = GE

(A < B) = GE

EQ=P, ., (A <= B) = GE + EQ

Functions Realized Without Adders

m Not all arithmetic functions are realized by using adders
= Shift / Rotate Units

m Binary Logic functions are also used by processors
= AND
= OR
= XOR
= NOT

These are implemented very easily

Shifters

m Logical shifter: shifts value to left or right and fills empty
spaces with 0" s
= Ex: 11001 >> 2 = ??
" Ex: 11001 << 2 = ??

m Arithmetic shifter: same as logical shifter, but on right shift,
fills empty spaces with the old most significant bit (msb).
= Ex: 11001 >>> 2 = ??
= Ex: 11001 <<< 2 = ??

m Rotator: rotates bits in a circle, such that bits shifted off one
end are shifted into the other end
"= Ex: 11001 ROR 2 = ??
= Ex: 11001 ROL 2 = ??

Shifters

m Logical shifter: shifts value to left or right and fills empty
spaces with 0’s

" Ex: 11001 >> 2

" Ex: 11001 << 2

00110
00100

m Arithmetic shifter: same as logical shifter, but on right shift,
fills empty spaces with the old most significant bit (msb).
= Ex: 11001 >>> 2 = 11110
" Ex: 11001 <<< 2 = 00100

m Rotator: rotates bits in a circle, such that bits shifted off one
end are shifted into the other end
= Ex: 11001 ROR 2 = 01110
= Ex: 11001 ROL 2 = 00111

Shifter Design

A, A A A

3 °2°1°°0

shamt_,

Shifters as Multipliers and Dividers

m A left shift by N bits multiplies a number by 2V
" Ex: 00001 << 2 = 00100 (1 x 22 = 4)
= Ex: 11101 << 2 = 10100 (-3 x 22 = -12)

m The arithmetic right shift by N divides a number by 2V
= Ex: 01000 >>> 2 = 00010 (8 + 22 = 2)
" Ex: 10000 >>> 2 = 11100 (-16 = 22 = -4)

Other Functions

m We have covered 90% of the arithmetic functions commonly
used in a CPU

m Division
= Dedicated architectures not very common

= Mostly implemented by existing hardware (multipliers, subtractors
comparators) iteratively

m Exponential, Logarithmic, Trigonometric Functions
= Dedicated hardware (less common)
®= Numerical approximations:
exp(x) =1 + x2/2! + x3/3! + ..

= Look-up tables (more common)

Arithmetic Logic Unit

The reason why we study digital circuits:
the part of the CPU that does something (other than copying data)

m Defines the basic operations that the CPU can perform directly

= Other functions can be realized using the existing ones iteratively. (i.e.
multiplication can be realized by shifting and adding)

m Mostly, a collection of resources that work in parallel.

= Depending on the operation one of the outputs is selected

Example: Arithmetic Logic Unit (ALU), pg243

000 A&B
A B
N N 001 Al|B
\/ 010 A+B
ALU 3 F 011 not used
/I/N 100 A&~B
Y 101 A|~B
110 A-B

111 SLT

Example: ALU Design

000
001
010
011
100
101
110
111

A&B
A|B
A+B
not used
A&"~B
A|~B
A-B
SLT

Set Less Than (SLT) Example

b m Configure a 32-bit ALU for the set if
less than (SLT) operation. Suppose

A =25 and B = 32.

HN S = Aisless than B, so we expect Y to be the
- F, 32-bit representation of 1
. (0x00000001).

Cout {‘l‘ /
IN-1]|S

Y
g o
o O

N N N N
w N [()

2 I:1:0
)(N

Set Less Than (SLT) Example

m Configure a 32-bit ALU for the set if
less than (SLT) operation. Suppose

A=

25 and B = 32.

A is less than B, so we expect Y to be the
32-bit representation of 1
(0x00000001).

For SLT, F,,,=111.

F2 = 1 configures the adder unit as a
subtracter. So 25-32 =-7.

The two’s complement representation of
-7 has a 1 in the most significant bit, so
S = 1.

With F,, = 11, the final multiplexer

selects
Y =S, (zero extended) = 0x00000001

What Did We Learn?

m How can we add, subtract, multiply binary numbers

m What other circuits depend on adders
= Subtracter
" |ncrementer
" Comparator

" Important part of Multiplier

m Other functions (shifting)

m How is an Arithmetic Logic Unit constructed

