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In This Lecture

 Why are arithmetic circuits so important

 Adders

 Adding two binary numbers

 Adding more than two binary numbers

 Circuits Based on Adders

 Multipliers

 Functions that do not use adders

 Arithmetic Logic Units
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Motivation: Arithmetic Circuits

 Core of every digital circuit

 Everything else is side-dish, arithmetic circuits are the heart of the digital 
system

 Determines the performance of the system

 Dictates clock rate, speed, area

 If arithmetic circuits are optimized performance will improve

 Opportunities for improvement

 Novel algorithms require novel combinations of arithmetic circuits, there 
is always room for improvement
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Example: ARM Microcontroller

 Most popular embedded
micro controller.

 Contains:

 Multiplier

 Accumulator

 ALU/Adder

 Shifter

 Incrementer
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Example: ARM Instructions
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Arithmetic Based Instructions of ARM
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Types of Arithmetic Circuits

 In order of complexity:

 Shift / Rotate

 Compare

 Increment / Decrement

 Negation

 Addition / Subtraction

 Multiplication

 Division

 Square Root

 Exponentation

 Logarithmic / Trigonometric Functions
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Relation Between Arithmetic Operators
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Addition

 Addition is the most important operation in computer 
arithmetic. Our topics will be:

 Adding 1-bit numbers : Counting bits

 Adding two numbers : Basics of addition

 Circuits based on adders : Subtractors, Comparators

 Adding multiple numbers : Chains of Adders

 Later we will also talk about fast adder architectures
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Half-Adder (2,2) Counter

 The Half Adder (HA) is the simplest arithmetic block

 It can add two 1-bit numbers, result is a 2-bit number

 Can be realized easily
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Full-Adder (3,2) Counter

 The Full Adder (FA) is the essential
arithmetic block

 It can add three 1-bit numbers, result 
is a 2-bit number

 There are many realizations both at 
gate and transistor level.

 Since it is used in building many 
arithmetic operations, the 
performance of one FA influences the 
overall performance greatly.
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Adding Multiple 1-bit Numbers
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Adding Multiple Digits

 Similar to decimal addition

 Starting from the right, each digit is added

 The carry from one digit is added to the digit to the left
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Adding Multiple Digits

 Similar to decimal addition

 Starting from the right, each digit is added

 The carry from one digit is added to the digit to the left
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Ripple Carry Adder (RCA)
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Curse of the Carry

The most significant outputs of the adder
depends on the least significant inputs
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Adding Multiple Numbers

 Multiple fast adders not a good idea

 If more than 2 numbers are to be added, multiple fast adders are not 
really efficient

 Use an array of ripple carry adders

 Popular and efficient solution

 Use carry save adder trees

 Instead of using carry propagate adders (the adders we have seen so far), 
carry save adders are used to reduce multiple inputs to two, and then a 
single carry propagate adder is used to sum up.
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Array of Ripple Carry Adders
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Carry Save Principle

 Reduces three numbers to two with a single gate delay

C + S = E + F + G
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Carry Save Principle

Z = D + E + F + G + H

 An array of carry save 
adders reduce the inputs to 
two

 A final (fast) carry propagate 
adder (CPA) merges the two 
numbers

 Performance mostly 
dictated by CPA
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Multipliers

 Largest common arithmetic block

 Requires a lot of calculation

 Has three parts

 Partial Product Generation

 Carry Save Tree to reduce partial products

 Carry Propagate Adder to finalize the addition

 Adder performance (once again) is important

 Many optimization alternatives



Carnegie Mellon

22

Decimal Multiplication
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Binary Multiplication
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For n-bit Multiplier m-bit Multiplicand

 Generate Partial Products

 For each bit of the multiplier the partial product is either

 when ‘0’: all zeroes

 when ‘1’: the multiplicand

achieved easily by AND gates

 Reduce Partial Products

 This is the job of a carry save adder  

 Generate the Result (n + m bits)

 This is a large, fast Carry Propagate Adder
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Parallel Multiplier



Carnegie Mellon

26

Parallel Multiplier
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Operations Based on Adders

 Several well-known arithmetic operation are based on adders:

 Negator

 Incrementer

 Subtracter

 Adder Subtracter

 Comparator
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Negating Two’s Complement Numbers

 To negate a two’s 
complement number

-A = A + 1

 All bits are inverted

 One is added to the result

 Can be realized easily by an 
adder.

 B input is optimized away
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Incrementer

 B input is zero

 Carry In (Cin) of the adder 
can be used as the 
Increment (Inc) input

 Decrementer similar in 
principle
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Subtracter

 B input is inverted

 Cin of the adder is used to 
complement B
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Subtracter

 B input is inverted

 Cin of the adder is used to 
complement B

 It can be made 
programmable so that both 
additions and subtractions 
can be performed at the 
same time 
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Comparator

 Based on a Subtractor

(A  = B) = EQ

(A != B) = EQ

(A >  B) = GE EQ

(A >= B) = GE

(A <  B) = GE

(A <= B) = GE + EQ
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Functions Realized Without Adders

 Not all arithmetic functions are realized by using adders

 Shift / Rotate Units

 Binary Logic functions are also used by processors

 AND

 OR

 XOR

 NOT

These are implemented very easily
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Shifters

 Logical shifter: shifts value to left or right and fills empty 
spaces with 0’s

 Ex: 11001 >> 2 = ??

 Ex: 11001 << 2 = ??

 Arithmetic shifter: same as logical shifter, but on right shift, 
fills empty spaces with the old most significant bit (msb).

 Ex: 11001 >>> 2 = ??

 Ex: 11001 <<< 2 = ??

 Rotator: rotates bits in a circle, such that bits shifted off one 
end are shifted into the other end

 Ex: 11001 ROR 2 = ??

 Ex: 11001 ROL 2 = ??



Carnegie Mellon

35

Shifters

 Logical shifter: shifts value to left or right and fills empty 
spaces with 0’s

 Ex: 11001 >> 2 = 00110

 Ex: 11001 << 2 = 00100

 Arithmetic shifter: same as logical shifter, but on right shift, 
fills empty spaces with the old most significant bit (msb).

 Ex: 11001 >>> 2 = 11110

 Ex: 11001 <<< 2 = 00100

 Rotator: rotates bits in a circle, such that bits shifted off one 
end are shifted into the other end

 Ex: 11001 ROR 2 = 01110

 Ex: 11001 ROL 2 = 00111
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Shifter Design
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Shifters as Multipliers and Dividers

 A left shift by N bits multiplies a number by 2N

 Ex: 00001 << 2  = 00100  (1 × 22 = 4)

 Ex: 11101 << 2  = 10100  (-3 × 22 = -12)

 The arithmetic right shift by N divides a number by 2N

 Ex: 01000 >>> 2 = 00010  (8 ÷ 22 = 2)

 Ex: 10000 >>> 2 = 11100  (-16 ÷ 22 = -4)



Carnegie Mellon

38

Other Functions

 We have covered 90% of the arithmetic functions commonly 
used in a CPU

 Division

 Dedicated architectures not very common

 Mostly implemented by existing hardware (multipliers, subtractors
comparators) iteratively

 Exponential, Logarithmic, Trigonometric Functions

 Dedicated hardware (less common)

 Numerical approximations:

exp(x) = 1 + x2/2! + x3/3! + …

 Look-up tables (more common)
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Arithmetic Logic Unit

The reason why we study digital circuits:
the part of the CPU that does something (other than copying data)

 Defines the basic operations that the CPU can perform directly

 Other functions can be realized using the existing ones iteratively. (i.e. 
multiplication can be realized by shifting and adding)

 Mostly, a collection of resources that work in parallel.

 Depending on the operation one of the outputs is selected
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Example: Arithmetic Logic Unit (ALU), pg243

ALU
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110 A - B

111 SLT
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Example: ALU Design
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Set Less Than (SLT) Example

 Configure a 32-bit ALU for the set if 
less than (SLT) operation.  Suppose 
A = 25 and B = 32.

 A is less than B, so we expect Y to be the 
32-bit representation of 1 
(0x00000001).
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Set Less Than (SLT) Example

 Configure a 32-bit ALU for the set if 
less than (SLT) operation.  Suppose 
A = 25 and B = 32.

 A is less than B, so we expect Y to be the 
32-bit representation of 1 
(0x00000001).

 For SLT, F2:0 = 111.

 F2 = 1 configures the adder unit as a 
subtracter. So 25 - 32 = -7.

 The two’s complement representation of 
-7 has a 1 in the most significant bit, so 
S31 = 1.

 With F1:0 = 11, the final multiplexer 
selects 
Y = S31 (zero extended) = 0x00000001
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What Did We Learn?

 How can we add, subtract, multiply binary numbers

 What other circuits depend on adders

 Subtracter

 Incrementer

 Comparator

 Important part of Multiplier

 Other functions (shifting)

 How is an Arithmetic Logic Unit constructed


