
ECE4680 ALU design.1 2002-2-20

ECE4680
Computer Organization & Architecture

The Design Process & ALU Design

ECE4680 ALU design.2 2002-2-20

The Design Process

"To Design Is To Represent"
Design activity yields description/representation of an object

-- Traditional craftsman does not distinguish between the concept-
ualization and the artifact

-- Separation comes about because of complexity

-- The concept is captured in one or more representation languages

-- This process IS design

Design Begins With Requirements

-- Functional Capabilities: what it will do

-- Performance Characteristics: Speed, Power, Area, Cost, . . .

ECE4680 ALU design.3 2002-2-20

Design Process (cont.)

Design Finishes As Assembly

-- Design understood in terms of
components and how they have
been assembled

-- Top Down decomposition of
complex functions (behaviors)
into more primitive functions

-- bottom-up composition of primitive
building blocks into more complex assemblies

CPU

Datapath Control

ALU Regs Shifter

Nand
Gate

Design is a "creative process," not a simple method

ECE4680 ALU design.4 2002-2-20

Design Refinement

Informal System Requirement

Initial Specification

Intermediate Specification

Final Architectural Description

Intermediate Specification of Implementation

Final Internal Specification

Physical Implementation

refinement
increasing level of detail

ECE4680 ALU design.5 2002-2-20

Design as Search

Design involves educated guesses and verification

-- Given the goals, how should these be prioritized?

-- Given alternative design pieces, which should be selected?

-- Given design space of components & assemblies, which part will yield
the best solution?

Feasible (good) choices vs. Optimal choices

Problem A

Strategy 1 Strategy 2

SubProb 1 SubProb 2 SubProb 3

BB1 BB2 BB3 BBn : Basic Blocks

ECE4680 ALU design.6 2002-2-20

Design as Representation (example)

(1) Functional Specification

Inputs: 2 x 16 bit operands－－－－A, B; 1 bit carry input－－－－Cin.

Outputs: 1 x 16 bit result－－－－S; 1 bit carry output－－－－Cout.

Operations: PASS, ADD (A plus B plus Cin), SUB (A minus B
minus Cin), AND, XOR, OR, COMPARE (equality)

Performance: left unspecified for now!

(2) Block Diagram

Understand the data and control flows

ALU
A B

M

CinCout
S

16 16

16

3
mode/function

"VHDL Behavior"

"VHDL Entity"

ECE4680 ALU design.7 2002-2-20

Elements of the Design Process

°Divide and Conquer (e.g. ALU)
• Formulate a solution in terms of simpler components.
• Design each of the components (subproblems)

°Generate and Test (e.g. ALU)
• Given a collection of building blocks, look for ways of putting

them together that meets requirement

°Successive Refinement (e.g. carry lookahead)
• Solve "most" of the problem (i.e., ignore some constraints or

special cases), examine and correct shortcomings.

°Formulate High-Level Alternatives (e.g. carry select)
• Articulate many strategies to "keep in mind" while pursuing any

one approach.

°Work on the Things you Know How to Do
• The unknown will become “obvious” as you make progress.

ECE4680 ALU design.8 2002-2-20

Summary of the Design Process

Hierarchical Design to manage complexity

Top Down vs. Bottom Up vs. Successive Refinement

Importance of Design Representations:

Block Diagrams

Decomposition into Bit Slices

Truth Tables, K-Maps

Circuit Diagrams

Other Descriptions: state diagrams, timing diagrams, reg xfer, . . .

Optimization Criteria:

Gate Count

[Package Count]

Logic Levels

Fan-in/Fan-out

Power

top
down bottom

up

Area Delay

mux design
meets at TT

Cost

Design timePin Out

ECE4680 ALU design.9 2002-2-20

Introduction to Binary Numbers

� Consider a 4-bit binary number

� Examples:
� 3 + 2 = 5 3 + 3 = 6

� Problems: how to represent signed number? How to do subtraction?

BinaryBinaryDecimal
0 0000
1 0001
2 0010
3 0011

Decimal
4 0100
5 0101
6 0110
7 0111

0 0 1 1

0 0 1 0+

0 1 0 1

1

0 0 1 1

0 0 1 1+

0 1 1 0

1 1

ECE4680 ALU design.10 2002-2-20

Sign and Magnitude Representation

BinaryBinaryDecimal Decimal
0 0000
1 0001
2 0010
3 0011

4 0100
5 0101
6 0110
7 0111

-0 1000
-1 1001
-2 1010
-3 1011

-4 1100
-5 1101
-6 1110
-7 1111

� Easy for human to understand, but

� 0 has two representation: a problem for programmer.

� Need different ways to do addition and subtraction.

� Extra step to set sign for the result: a problem for hardware.

� Especially when a<b, how to do a-b ?

ECE4680 ALU design.11 2002-2-20

Two’s Complement Representation

� 2’s complement representation of negative numbers
• Bitwise inverse and add 1
• The MSB is always “1” for negative number => sign bit

� Biggest 4-bit Binary Number: 7 Smallest 4-bit Binary Number: -8

2’s ComplementBinaryDecimal
0 0000
1 0001
2 0010
3 0011

0000
1111
1110
1101

Decimal
0

-1
-2
-3

Bitwise
Inverse

1111
1110
1101
1100

4 0100
5 0101
6 0110
7 0111

1100
1011
1010
1001

-4
-5
-6
-7

1011
1010
1001
1000

1000-8 01118 1000

“Illegal” Positive Number!

ECE4680 ALU design.12 2002-2-20

Two’s Complement Arithmetic

°Examples: 7 - 6 = 7 + (- 6) = 1 3 - 5 = 3 + (- 5) = - 2

2’s ComplementBinaryDecimal
0 0000
1 0001
2 0010
3 0011

0000
1111
1110
1101

Decimal
0

-1
-2
-3

4 0100
5 0101
6 0110
7 0111

1100
1011
1010
1001

-4
-5
-6
-7

1000-8

0 1 1 1

1 0 1 0+

0 0 0 1

1

0 0 1 1

1 0 1 1+

1 1 1 0

1 111

ECE4680 ALU design.13 2002-2-20

Two’s Complement Properties

2’s ComplementBinaryDecimal
0 0000
1 0001
2 0010
3 0011

0000
1111
1110
1101

Decimal
0

-1
-2
-3

4 0100
5 0101
6 0110
7 0111

1100
1011
1010
1001

-4
-5
-6
-7

1000-8

� Treat subtraction the same way as for addition.

� Negate a number ���� invert the number + add 1. (Page 216)

� Sign extension: when word is prolonged, fill sign bit into the new bits. See above example.

F
ro

m
 3

 b
its

to
 4

 b
its

ECE4680 ALU design.14 2002-2-20

Functional Specification of the ALU

°ALU Control Lines (ALUop) Function
• 000 And
• 001 Or
• 010 Add
• 110 Subtract
• 111 Set-on-less-than

A
L

U

N

N

N

A

B

Result

Overflow

Zero

3
ALUop

CarryOut

ECE4680 ALU design.15 2002-2-20

A One Bit ALU

°This 1-bit ALU will perform AND, OR, and ADD

A

B

1-bit
Full

Adder

CarryOut

CarryIn

M
ux Result

and

or

add

ECE4680 ALU design.16 2002-2-20

A One-bit Full Adder

°This is also called a (3, 2) adder

°Half Adder: No CarryIn nor CarryOut

°Truth Table:

1-bit
Full

Adder

CarryOut

CarryIn

A

B
C

Inputs Outputs

CommentsA B CarryIn SumCarryOut

0 0 0 0 0 0 + 0 + 0 = 00

0 0 1 0 1 0 + 0 + 1 = 01

0 1 0 0 1 0 + 1 + 0 = 01

0 1 1 1 0 0 + 1 + 1 = 10

1 0 0 0 1 1 + 0 + 0 = 01

1 0 1 1 0 1 + 0 + 1 = 10

1 1 0 1 0 1 + 1 + 0 = 10

1 1 1 1 1 1 + 1 + 1 = 11

ECE4680 ALU design.17 2002-2-20

Logic Equation for CarryOut

°CarryOut = (!A & B & CarryIn) | (A & !B & CarryIn) | (A & B & !CarryIn)
| (A & B & CarryIn)

°CarryOut = B & CarryIn | A & CarryIn | A & B

Inputs Outputs

CommentsA B CarryIn SumCarryOut

0 0 0 0 0 0 + 0 + 0 = 00

0 0 1 0 1 0 + 0 + 1 = 01

0 1 0 0 1 0 + 1 + 0 = 01

0 1 1 1 0 0 + 1 + 1 = 10

1 0 0 0 1 1 + 0 + 0 = 01

1 0 1 1 0 1 + 0 + 1 = 10

1 1 0 1 0 1 + 1 + 0 = 10

1 1 1 1 1 1 + 1 + 1 = 11

ECE4680 ALU design.18 2002-2-20

Logic Equation for Sum

°Sum = (!A & !B & CarryIn) | (!A & B & !CarryIn) | (A & !B & !CarryIn)
| (A & B & CarryIn)

Inputs Outputs

CommentsA B CarryIn SumCarryOut

0 0 0 0 0 0 + 0 + 0 = 00

0 0 1 0 1 0 + 0 + 1 = 01

0 1 0 0 1 0 + 1 + 0 = 01

0 1 1 1 0 0 + 1 + 1 = 10

1 0 0 0 1 1 + 0 + 0 = 01

1 0 1 1 0 1 + 0 + 1 = 10

1 1 0 1 0 1 + 1 + 0 = 10

1 1 1 1 1 1 + 1 + 1 = 11

ECE4680 ALU design.19 2002-2-20

Logic Equation for Sum (continue)

°Sum = (!A & !B & CarryIn) | (!A & B & !CarryIn) | (A & !B & !CarryIn)
| (A & B & CarryIn)

°Sum = A XOR B XOR CarryIn

°Truth Table for XOR:

X Y X XOR Y

0 0 0
0 1 1
1 0 1
1 1 0

ECE4680 ALU design.20 2002-2-20

Logic Diagrams for CarryOut and Sum

°CarryOut = B & CarryIn | A & CarryIn | A & B

°Sum = A XOR B XOR CarryIn

CarryIn

CarryOut

A

B

A
B

CarryIn

Sum

ECE4680 ALU design.21 2002-2-20

A 4-bit ALU

° 1-bit ALU 4-bit ALU

A

B

1-bit
Full

Adder

CarryOut

M
ux

CarryIn

Result

A0

B0
1-bit
ALU

Result0

CarryIn0

CarryOut0
A1

B1
1-bit
ALU

Result1

CarryIn1

CarryOut1
A2

B2
1-bit
ALU

Result2

CarryIn2

CarryOut2
A3

B3
1-bit
ALU

Result3

CarryIn3

CarryOut3

ECE4680 ALU design.22 2002-2-20

How About Subtraction?

°Keep in mind the followings:
• (A - B) is the that as: A + (-B)
• 2’s Complement: Take the inverse of every bit and add 1

°Bit-wise inverse of B is !B:
• A + !B + 1 = A + (!B + 1) = A + (-B) = A - B

“A
L

U
”

4

4

4

A

!B

Result

Zero

CarryIn

CarryOut

4
B

4

0

1

2x1 M
ux

Sel

Subtract

ECE4680 ALU design.23 2002-2-20

Overflow

°Examples: 7 + 3 = 10 but ... - 4 - 5 = - 9 but ...

2’s ComplementBinaryDecimal
0 0000
1 0001
2 0010
3 0011

0000
1111
1110
1101

Decimal
0

-1
-2
-3

4 0100
5 0101
6 0110
7 0111

1100
1011
1010
1001

-4
-5
-6
-7

1000-8

0 1 1 1

0 0 1 1+

1 0 1 0

1

1 1 0 0

1 0 1 1+

0 1 1 1

110

7
3

1

- 6

- 4
- 5

7

ECE4680 ALU design.24 2002-2-20

Overflow Detection

°Overflow: the result is too large (or too small) to represent properly
• Example: - 8 < = 4-bit binary number <= 7

°When adding operands with different signs, overflow cannot occur!

°Overflow occurs when adding:
• 2 positive numbers and the sum is negative
• 2 negative numbers and the sum is positive

°Homework exercise: Prove you can detect overflow by:
• Carry into MSB ! = Carry out of MSB

0 1 1 1

0 0 1 1+

1 0 1 0

1

1 1 0 0

1 0 1 1+

0 1 1 1

110

7
3

1

-6

- 4
- 5

7

0

ECE4680 ALU design.25 2002-2-20

Overflow Detection Logic

°Carry into MSB ! = Carry out of MSB
• For a N-bit ALU: Overflow = CarryIn[N - 1] XOR CarryOut[N - 1]

A0

B0
1-bit
ALU

Result0

CarryIn0

CarryOut0
A1

B1
1-bit
ALU

Result1

CarryIn1

CarryOut1
A2

B2
1-bit
ALU

Result2

CarryIn2

A3

B3
1-bit
ALU

Result3

CarryIn3

CarryOut3

Overflow

X Y X XOR Y

0 0 0
0 1 1
1 0 1
1 1 0

ECE4680 ALU design.26 2002-2-20

Zero Detection Logic

°Zero Detection Logic is just a one BIG NOR gate
• Any non-zero input to the NOR gate will cause its output to be zero

CarryIn0

A0

B0
1-bit
ALU

Result0

CarryOut0
A1

B1
1-bit
ALU

Result1
CarryIn1

CarryOut1
A2

B2
1-bit
ALU

Result2
CarryIn2

CarryOut2
A3

B3
1-bit
ALU

Result3
CarryIn3

CarryOut3

Zero

ECE4680 ALU design.27 2002-2-20

The Disadvantage of Ripple Carry

°The adder we just built is called a “Ripple Carry Adder”
• The carry bit may have to propagate from LSB to MSB
• Worst case delay for a N-bit adder: 2N-gate delay

A0

B0
1-bit
ALU

Result0

CarryOut0
A1

B1
1-bit
ALU

Result1

CarryIn1

CarryOut1
A2

B2
1-bit
ALU

Result2

CarryIn2

A3

B3
1-bit
ALU

Result3

CarryIn3

CarryOut3

CarryOut2

CarryIn0

CarryIn

CarryOut

A

B

ECE4680 ALU design.28 2002-2-20

Carry Select Header

°Consider building a 8-bit ALU
• Simple: connects two 4-bit ALUs in series

Result[3:0]A
L

U

4

4

4

A[3:0] CarryIn

B[3:0]
A

L
U

4

4

4

A[7:4]

Result[7:4]

CarryOut

B[7:4]

ECE4680 ALU design.29 2002-2-20

Carry Select Header (Continue)
°Consider building a 8-bit ALU

• Expensive but faster: uses three 4-bit ALUs

°Calculate two results and use the correct one
Result[3:0]A

L
U

4

4

4

A[3:0] CarryIn

B[3:0]

C4

4

X[7:4]A
L

U

4

4

A[7:4]

0

B[7:4]

C0

4

Y[7:4]A
L

U

4

4

A[7:4]
1

B[7:4]

C1

2 to 1 M
U

X

Sel
0

1

Result[7:4]

4

2 to 1 MUX0 1 Sel
C4

CarryOut

ECE4680 ALU design.30 2002-2-20

The Theory Behind Carry Lookahead

°Recalled: CarryOut = (B & CarryIn) | (A & CarryIn) | (A & B)
• Cin2 = Cout1 = (B1 & Cin1) | (A1 & Cin1) | (A1 & B1)
• Cin1 = Cout0 = (B0 & Cin0) | (A0 & Cin0) | (A0 & B0)

°Substituting Cin1 into Cin2:
• Cin2 = (A1 & A0 & B0) | (A1 & A0 & Cin0) | (A1 & B0 & Cin0) |

(B1 & A0 & B0) | (B1 & A0 & Cin0) | (B1 & A0 & Cin0) | (A1 & B1)

°Now define two new terms:
• Generate Carry at Bit i gi = Ai & Bi
• Propagate Carry via Bit i pi = Ai or Bi

Cin0

A0B0

1-bit
ALUC

out0

A1B1

1-bit
ALU

C
in1

C
out1

Cin2

Ai Bi Cout
0 0 0 “kill”
0 1 Cin “propagate”
1 0 Cin “propagate”
1 1 1 “generate”

ECE4680 ALU design.31 2002-2-20

The Theory Behind Carry Lookahead (Continue)

°Using the two new terms we just defined:
• Generate Carry at Bit i gi = Ai & Bi
• Propagate Carry via Bit i pi = Ai or Bi

°We can rewrite:
• Cin1 = g0 | (p0 & Cin0)
• Cin2 = g1 | (p1 & g0) | (p1 & p0 & Cin0)
• Cin3 = g2 | (p2 & g1) | (p2 & p1 & g0) | (p2 & p1 & p0 & Cin0)

°Carry going into bit 3 is 1 if
• We generate a carry at bit 2 (g2)
• Or we generate a carry at bit 1 (g1) and

bit 2 allows it to propagate (p2 & g1)
• Or we generate a carry at bit 0 (g0) and

bit 1 as well as bit 2 allows it to propagate (p2 & p1 & g0)
• Or we have a carry input at bit 0 (Cin0) and

bit 0, 1, and 2 all allow it to propagate (p2 & p1 & p0 & Cin0)

°Cini = f(g0,g1,…gi-1,p0,p1,…pi-1, Cin0) = f(A0,A1,…Ai-1,B0,B1,…Bi-1, Cin0) :
Calculation of Cini can be quickly started since it is based on all initial inputs.
All logical functions can be implemented by 2 levels of gates.

Ai Bi Cout
0 0 0 “kill”
0 1 Cin “propagate”
1 0 Cin “propagate”
1 1 1 “generate”

ECE4680 ALU design.32 2002-2-20

Carry Lookahead Adder (Design trick: peek)

A0
B0

1-bit
ALU

Result0

A1
B1

1-bit
ALU

Result1

Cin1

A2
B2

1-bit
ALU

Result2

Cin2

A3
B3

1-bit
ALU

Result3

Cin3

CarryIn0

� Cini = f(g0,g1,…gi-1,p0,p1,…pi-1, Cin0) = f(A0,A1,…Ai-1,B0,B1,…Bi-1, Cin0) :
Calculation of Cini can be quickly started since it is based on all initial inputs.
All logical functions can be implemented by 2 levels of gates.

CarryOut3

g0 + p0 · Cin0 =

g1 + p1 · g0 + p1 · p0 · Cin0 =

g2 + p2 · g1 + p2 · p1 · g0 + p2 · p1 · p0 · Cin0 =

gi = Ai · Bi
pi = Ai + Bi

Carry Lookahead Unit

ECE4680 ALU design.33 2002-2-20

Compare Ripple Carry and Carry Lookahead

A0

B0
1-bit
ALU

Result0

Cout0

A1

B1
1-bit
ALU

Result1

Cin1

Cout1

A2

B2
1-bit
ALU

Result2

Cin2

A3

B3
1-bit
ALU

Result3

Cin3

CarryOut3

Cout2

Cin0

A0
B0

1-bit
ALU

Result0

A1
B1

1-bit
ALU

Result1

Cin1

A2
B2

1-bit
ALU

Result2

Cin2

A3
B3

1-bit
ALU

Result3

Cin3

CarryIn0

� Cini = f(A0,A1,…Ai-1,B0,B1,…Bi-1, Cin0) : Computation of Cini can be quickly started
since it is based on all initial inputs. All logical functions can be implemented by 2
levels of gates.

� The sequential dependency of Ripple Carry is broken. All bits in Carry Lookahead
can work in parallel. The delay of N-bit Carry Lookahead adder is always a constant
of 4. But Imagine how expensive/complex the hardware would be!

CarryOut3

C
arry L

ookahead
U

nit

ECE4680 ALU design.34 2002-2-20

A Partial Carry Lookahead Adder

°It is very expensive to build a “full” carry lookahead adder
• Just imagine the length of the equation for Cin31

°Common practices:
• Connects several N-bit Lookahead Adders to form a big adder
• Example: connects four 8-bit carry lookahead adders to form

a 32-bit partial carry lookahead adder

8-bit Carry
Lookahead

Adder

C0

8

88

Result[7:0]

B[7:0]A[7:0]

8-bit Carry
Lookahead

Adder

C8

8

88

Result[15:8]

B[15:8]A[15:8]

8-bit Carry
Lookahead

Adder

C16

8

88

Result[23:16]

B[23:16]A[23:16]

8-bit Carry
Lookahead

Adder

C24

8

88

Result[31:24]

B[31:24]A[31:24]

ECE4680 ALU design.35 2002-2-20

Hierarchical Carry Lookahead Adder
Super Propagate Carry Super Generate Carry
P0 = p3 & p2 & p1 & p0 G0 = g3 | p3&g2 | p3&p2&g1 | p3&p2&p1&g0
P1 = p7 & p6 & p5 & p4 G1 = g7 | p7&g6 | p7&p6&g5 | p7&p6&p5&g4
P2 = p11 & p10 & p9 & p8 G2 = g11| p11&g10 | p11&p10&g9 | p11&p10&p9&g8
P3 = p15 & p14 & p13 & p12 G3 = g15| p15&g14 | p15&p14&g13 | p15&p14&p13&g12

c04-bit Carry
Lookahead Adder

4

44

Result[11:8]

B[11:8]A[11:8]

P2G2C3

4-bit Carry
Lookahead Adder

4

44

Result[7:4]

B[7:4]A[7:4]

P1G1C2

4-bit Carry
Lookahead Adder

4

44

Result[3:0]

B[3:0]A[3:0]

P0G0

4-bit Carry
Lookahead Adder

4

44

Result[15:12]

B[15:12]A[15:12]

P3G3C4 C1
carry-lookahead unit at higher level

C1 = G0 | P0&c0
C2 = G1 | P1&G0 | P1&P0&c0
C3 = G2 | P2&G1 | P2&P1&G0 |P2&P1&P0&c0
C4 = G3 | P3&G2 | P3&P2&G1 |P3&P2&P1&G0 | P3&P2&P1&P0&c0

4-bit ripple
carry adder

ECE4680 ALU design.36 2002-2-20

Summary

°An Overview of the Design Process
• Design is an iterative process-- successive refinement
• Do NOT wait until you know everything before you start

°An Introduction to Binary Arithmetics
• If you use 2’s complement representation, subtract is easy.

°ALU Design
• Designing a Simple 4-bit ALU
• Other ALU Construction Techniques

°More information from Chapter 4 of the textbook

