
Implementing Algorithms in MIPS Assembly
(Part 2)

February 6–11, 2013

1 / 37

Outline

Reading strings into memory

Jumps and conditional branches

Branching control structures
If-then-else and if-then statements

Looping control structures
Do-while, while, and for loops
Break and continue, indefinite loops

Arrays
For-each loop
Switch statement

2 / 37

Reading a string from the user

Step 1: Reserve space for the string in the data segment
• use the .space directive
• argument is the number of bytes (characters) to reserve

• remember null-terminating character!
• should be a multiple of 4, to preserve word boundaries

Step 2: Read the string in your program
• use the “read string” system call (8)
• argument #1, $a0 = address of input buffer

• load label address with la

• argument #2, $a1 = size of input buffer

(MARS demo: Parrot.asm)

3 / 37

Outline

Reading strings into memory

Jumps and conditional branches

Branching control structures
If-then-else and if-then statements

Looping control structures
Do-while, while, and for loops
Break and continue, indefinite loops

Arrays
For-each loop
Switch statement

4 / 37

Control structures in assembly

How control structures are implemented in assembly
• insert labels in text segment
• jump or conditionally branch to labels

Your only primitive control structures are goto and if-goto!

Jump instructions (unconditional branches)
Jump j label # goto label
Jump register jr $t1 # goto the address in $t1

5 / 37

Conditional branching

Basic instructions
beq $t1, $t2, label # if ($t1 == $t2) goto label
bne $t1, $t2, label # if ($t1 != $t2) goto label

bgez $t1, label # if ($t1 >= 0) goto label
bgtz $t1, label # if ($t1 > 0) goto label
blez $t1, label # if ($t1 <= 0) goto label
bltz $t1, label # if ($t1 < 0) goto label

Macro instructions
beqz $t1, label # if ($t1 == 0) goto label
bnez $t1, label # if ($t1 != 0) goto label

beq $t1, 123, label # if ($t1 == 123) goto label
bne $t1, 123, label # if ($t1 != 123) goto label

bge $t1, $t2, label # if ($t1 >= $t2) goto label
bgt $t1, $t2, label # if ($t1 > $t2) goto label
bge $t1, 123, label # if ($t1 >= 123) goto label
bgt $t1, 123, label # if ($t1 > 123) goto label

and similarly for ble and blt

6 / 37

Outline

Reading strings into memory

Jumps and conditional branches

Branching control structures
If-then-else and if-then statements

Looping control structures
Do-while, while, and for loops
Break and continue, indefinite loops

Arrays
For-each loop
Switch statement

7 / 37

If-then-else statement

Structure of an if-then-else statement
if (condition) {

then-block (execute if condition is true)
} else {

else-block (execute if condition is false)
}

Sketch of translation to assembly
(translation of condition, ending in branch to thenLabel)
(translation of else-block)
j endLabel

thenLabel:
(translation of then-block)

endLabel:
(rest of program)

8 / 37

If-then-else statement

Example
Pseudocode:
if (a < b + 3)
a = a + 1
else
a = a + 2
b = b + a
Register mappings:
a: $t0, b: $t1

addi $t2, $t1, 3 # tmp = b + 3
blt $t0, $t2, then # if (a < tmp)
addi $t0, $t0, 2 # (else case) a = a + 2
j end

then: addi $t0, $t0, 1 # (then case) a = a + 1
end: add $t1, $t1, $t0 # b = b + a

9 / 37

If-then statement

Two strategies for if statements without else blocks:
1. use same strategy as if-then-else
2. complement condition (saves a branch on then-case)

Example of first strategy
Pseudocode:
if (a < b + 3)
a = a + 1
b = b + a
Register mappings:
a: $t0, b: $t1

addi $t2, $t1, 3 # tmp = b + 3
blt $t0, $t2, then # if (a < tmp)
j end

then: addi $t0, $t0, 1 # (then case) a = a + 1
end: add $t1, $t1, $t0 # b = b + a

10 / 37

If-then statement

Two strategies for if statements without else blocks:
1. use same strategy as if-then-else
2. complement condition (saves a branch on then-case)

Example of second strategy
Pseudocode:
if (a < b + 3)
a + 1
b = b + a
Register mappings:
a: $t0, b: $t1

addi $t2, $t1, 3 # tmp = b + 3
bge $t0, $t2, end # if (a >= tmp) goto end
addi $t0, $t0, 1 # a + 1

end: add $t1, $t1, $t0 # b = b + a

11 / 37

Outline

Reading strings into memory

Jumps and conditional branches

Branching control structures
If-then-else and if-then statements

Looping control structures
Do-while, while, and for loops
Break and continue, indefinite loops

Arrays
For-each loop
Switch statement

12 / 37

Do-while loop

Structure of a do-while loop
do {

loop-body
} while (condition);

Sketch of translation to assembly
loopLabel:

(translation of loop-body)
(translation of condition, ending in branch to loopLabel)
(rest of program)

13 / 37

Do-while loop

Example
Pseudocode:
do {
a = a + 3
} while (a < b*2);
Register mappings:
a: $t0, b: $t1

loop: addi $t0, $t0, 3 # (loop) a = a + 3
mul $t2, $t1, 2 # tmp = b*2
blt $t0, $t2, loop # if (a < tmp) goto loop

Optimization: Extract loop invariants
mul $t2, $t1, 2 # tmp = b*2

loop: addi $t0, $t0, 3 # (loop) a = a + 3
blt $t0, $t2, loop # if (a >= tmp) goto loop

14 / 37

While loop

Structure of a while loop
while (condition) {

loop-body
}

Like if-then, two strategies:
1. translate condition as usual, branch over jump to end
2. complement condition and branch to end

15 / 37

While loop

Strategy 1: Condition branches over jump to end

Sketch of translation to assembly
loopLabel:

(translation of condition, ending in branch to bodyLabel)
j endLabel

bodyLabel:
(translation of loop-body)
j loopLabel

endLabel:
(rest of program)

16 / 37

While loop

Strategy 2: Complement of condition branches to end

Sketch of translation to assembly
loopLabel:

(complement of condition, ending in branch to endLabel)
(translation of loop-body)
j loopLabel

endLabel:
(rest of program)

17 / 37

While loop

Pseudocode: while (a <= c + 4) { a = a + 3 }
b = b + a
Registers: a: $t0, b: $t1, c: $t2

Strategy 1: Condition branches over jump to end
addi $t3, $t2, 4 # tmp = c + 4

loop: ble $t0, $t3, body # while (a <= tmp) goto body
j end # goto end

body: addi $t0, $t0, 3 # (in loop) a = a + 3
j loop # end loop, repeat

end: add $t1, $t1, $t0 # b = b + a

Strategy 2: Complement of condition branches to end
addi $t3, $t2, 4 # tmp = c + 4

loop: bgt $t0, $t3, end # if (a > tmp) goto end
addi $t0, $t0, 3 # (in loop) a = a + 3
j loop # end loop, repeat

end: add $t1, $t1, $t0 # b = b + a

18 / 37

For loop

Structure of a for loop
for (initialize; condition; update) {

loop-body
}

Two step strategy:
1. translate into equivalent pseudocode using a while loop
2. translate that into assembly

19 / 37

For loop

Structure of a for loop
for (initialize; condition; update) {

loop-body
}

Equivalent program using while loop
initialize
while (condition) {

loop-body
update

}

20 / 37

Exercise

Pseudocode:
sum = 0
for (i = 0; i < n; i++) {
sum = sum + i
}
Registers: n: $t0, i: $t1, sum: $t2

Translate to lower-level pseudocode:
sum = 0
i = 0
while (i < n) {
sum = sum + i
i = i + 1
}

li $t2, 0 # sum = 0
li $t1, 0 # i = 0

loop: bge $t1, $t0, end # (start loop) if i >= n goto end
add $t2, $t2, $t1 # sum = sum + i
addi $t1, $t1, 1 # i = i + 1
j loop # (end loop)

end: # ...

21 / 37

Break and continue

In C-like languages, within loops:
• break – exit the loop
• continue – skip to the next iteration

Translation of break to assembly
j endLabel

Translation of continue to assembly
In while loop:
• j loopLabel

In for loop:
• Must execute update first← gotcha! (next slide)

22 / 37

Translation of continue in for-loop

Sketch of for-loop, translated to assembly
(translation of initialize)

loopLabel:
(complement of condition, ending in branch to endLabel)
(translation of loop-body)

updateLabel: # new label added for continue
(translation of update)
j loopLabel

endLabel:
(rest of program)

Translation of continue to assembly
j updateLabel

23 / 37

Translation of conditional break/continue

Common pattern: break/continue guarded by if-statement
• E.g. if (condition) break

Pseudocode:
while (true) {
...
if (a < b) break
...
}
Register mappings: a = $t0, b = $t1

Naive: translate if-then and break separately
loop: ... # (begin loop)

bge $t0, $t1, else # if (a < b)
j end # (then branch) break

else: ... # (rest of loop body)
j loop # (end loop)

end:

24 / 37

Translation of conditional break/continue

Naive: translate if-then and break separately
loop: ... # (begin loop)

bge $t0, $t1, else # if (a < b)
j end # (then branch) break

else: ... # (rest of loop body)
j loop # (end loop)

end:

Better: implement if-break as one conditional branch
loop: ... # (begin loop)

blt $t0, $t1, end # if (a < b) break
... # (rest of loop body)
j loop # (end loop)

end:

25 / 37

Indefinite loops

Structure of an indefinite loop
while (true) { loop-body }

Trivial to implement in assembly
loopLabel:

(translation of loop-body)
j loopLabel

endLabel: # needed for break
(rest of program)

Break and continue
• break – jump or branch to endLabel

• continue – jump or branch to loopLabel

(MARS demo: Circle.asm)

26 / 37

Exercise

Pseudocode:
total = 0
for (i = 0; i < n; i++) {
if (i % 5 > 2) continue
total += i
}
Registers: total = $t0, i = $t1, n = $t2
Note: rem $t3, $t1, 5 ==> $t3 = $t1 % 5

li $t1, 0 # (init) i = 0
loop: bge $t1, $t2, end # while (i < n)

rem $t3, $t1, 5 # tmp = i % 5
bgt $t3, 2, update # if (tmp > 2) continue
add $t0, $t0, $t1 # total += i

update: addi $t1, $t1, 1 # (update) i++
j loop # (end while)

end: # ...

27 / 37

Declaring arrays in the data segment (review)

Declare and initialize an array of integers
fibs: .word 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144

Reserve space but don’t initialize
save space for a 10 integer array
or a 39 character null-terminated string
array: .space 40

Argument to .space is number of bytes to reserve

28 / 37

Element addresses

Declaration in data segment
10 integer array or 39 character null-terminated string
array: .space 40

If we interpret as integers . . .
• array, array+4, array+8, array+12, . . . , array+36
• lw to move an integer from array (in memory) to a register

If we interpret as ASCII characters . . .
• array, array+1, array+2, array+3, . . . , array+36
• lb to move a character from array to a register
• lw to move a four character chunk into a register

lw — addresses must always respect word boundaries!

29 / 37

Basic addressing mode

lw $t1, 4($t2) # $t1 = Memory[$t2+4]

• $t1 is the destination register
• $t2 contains the base address (pointer to memory)
• 4 is the offset from the base address

sw $t1, 4($t2) # Memory[$t2+4] = $t1

• $t1 is the source register
• $t2 contains the base address (pointer to memory)
• 4 is the offset from the base address

(Similarly for lb and sb)

All other data memory addressing modes are translated to this form!

30 / 37

Pseudo-addressing modes

Macro instructions to read/write a specific address
lw $t1, $t2 # $t1 = Memory[$t2]
sw $t1, $t2 # Memory[$t2] = $t1

Macro instructions for reading/writing with labels
lw $t1, label # $t1 = Memory[label]
lw $t1, label+4 # $t1 = Memory[label+4]
lw $t1, label($t2) # $t1 = Memory[label+$t2]
sw $t1, label # Memory[label] = $t1
sw $t1, label+4 # Memory[label+4] = $t1
sw $t1, label($t2) # Memory[label+$t2] = $t1

This leads to many different ways to iterate through arrays

31 / 37

For-each loop (arrays only)

Structure of a for-each loop
foreach (elem in array) {

loop-body
}

elem and array are pseudocode-level names
• elem might map to a register
• array might map to a label

To implement, we must either:
• know the length of the array in advance
• use a marker in memory to indicate the end

• e.g. null-terminated string

32 / 37

For-each loop – enumerating the elements

Strategy #1, for-loop with counter
Pseudocode:
foreach (fib in fibs) {
...
}
Registers: fib = $t0, i = $t1

.data

fibs: .word 0, 1, 1, 2, 3, 5, 8, 13, 21, 35, 55, 89, 144

.text

li $t1, 0 # i = 0
loop: ... # (loop condition, TODO)

lw $t0, fibs($t1) # fib = fibs[i]
... # (loop body)
addi $t1, $t1, 4 # i++ <= +4
j loop # (end loop)

33 / 37

For-each loop – enumerating the elements

Strategy #2, increment address
Pseudocode:
foreach (fib in fibs) {
...
}
Registers: fib = $t0, addr = $t1

.data

fibs: .word 0, 1, 1, 2, 3, 5, 8, 13, 21, 35, 55, 89, 144

.text

li $t1, fibs # addr = fibs
loop: ... # (loop condition, TODO)

lw $t0, $t1 # fib = *addr
... # (loop body)
addi $t1, $t1, 4 # addr += 4
j loop # (end loop)

34 / 37

Switch statements

Structure of a switch statement
switch (n) {
(case k: k-block)∗

default: default-block
}

• n is an integer variable
• each k is an integer constant
• each k-block is a sequence of statements

• often ends in break

Execution rules
• if value of k=n, execute corresponding k-block

• keep executing subsequent blocks until break
• if no such k, execute default-block

35 / 37

Switch statements

Can implement using if-statements . . .
but there’s a clever strategy when all k’s are in a small range

Translation strategy
1. in text segment, implement and label each k-block and

the default-block, in order of switch statement
2. in data segment, declare array of addresses (jump table)

• in array at position i , label of case-block for i=k
• for “gaps” in cases, give label for default case

3. translate switch statement into an array lookup
• check bounds of n and jump to default case if out
• if in range, translate n to corresponding index (e.g. n*4)

4. use jr to jump to the address from array lookup

36 / 37

Switch statements

Example: Print properties of one digit number
Pseudocode: case 2:
switch (n) { print("n is even\n")
case 0: case 3:
print("n is zero\n") case 5:
break case 7:
case 4: print("n is prime\n")
print("n is even\n") break
case 1: case 6:
case 9: case 8:
print("n is a square\n") print("n is even\n")
break break
default:
print("out of range\n")
... (continue in next col) }

Example from: http://en.wikipedia.org/wiki/Switch_statement

(MARS demo: Switch.asm)

37 / 37

http://en.wikipedia.org/wiki/Switch_statement

	Reading strings into memory
	Jumps and conditional branches
	Branching control structures
	If-then-else and if-then statements

	Looping control structures
	Do-while, while, and for loops
	Break and continue, indefinite loops

	Arrays
	For-each loop
	Switch statement

