
1

Chapter 6 Registers and Counter
n The filp-flops are essential component in

clocked sequential circuits.

n Circuits that include filp-flops are usually
classified by the function they perform. Two
such circuits are registers and counters.

n An n-bit register consists of a group of n flip-
flops capable of storing n bits of binary
information.

2

6-1 Registers
n In its broadest definition, a register consists

a group of flip-flops and gates that effect
their transition.
n The flip-flops hold the binary information.
n The gates determine how the information is

transferred into the register.

n Counters are a special type of register.
n A counter goes through a predetermined

sequence of states.

3

6-1 Registers
n Fig 6-1 shows a

register constructed
with four D-type
filpflops.

n “Clock” triggers all flip-
folps on the positive
edge of each pulse.

n “Clear” is useful for
clearing the register to
all 0’s prior to its
clocked operation.

4

Register with Parallel Load
n A clock edge applied to the C inputs of the

register of Fig. 6-1 will load all four inputs in
parallel.

n For synchronism, it is advisable to control
the operation of the register with the D
inputs rather than controlling the clock in the
C inputs of the flip-flops.

n A 4-bit register with a load control input that
is directed through gates and into the D
inputs of the flip-flops si shown in Fig. 6-2.

5

Register with Parallel Load

6

Register with Parallel Load
n When the load input is 1 , the data in the

four inputs are transferred into the register
with next positive edge of the clock.

n When the load input is 0 ,the outputs of the
flip-flops are connected to their respective
inputs.

n The feedback connection from output to
input is necessary because the D flip-flops
does not have a “no change” condition.

7

6-2 Shift Registers
n A register capable of shifting its binary

information in one or both direction is called
a shift register.

n All flip-flops receive common clock pulses,
which activate the shift from one stage to
the next.

n The simplest possible shift register is one
that uses only flip-flops, as shown in Fig. 6-3.

8

Shift Registers

9

Shift Registers
n Each clock pulse shifts the contents of the

register one bit position to the right.
n The serial input determines what goes into

the leftmost flip-flop during the shift.
n The serial output is taken from the output of

the rightmost flip-flop.

10

Serial Transfer
n A digital system is said tp operate in a serial

mode when information is transferred and
manipulated one bit at a time.

n This in contrast to parallel transfer where all
the bits of the register are transferred at the
same time.

n The serial transfer us done with shift
registers, as shown in the block diagram of
Fig. 6-4(a).

11

Serial Transfer

12

Serial Transfer
n To prevent the loss of information stored in

the source register, the information in
register A is made to circulate by connecting
the serial output to its serial input.

n The shift control input determines when and
how many times the registers are shifted.
This is done with an AND gate that allows
clock pulses to pass into the CLK terminals
only when the shift control is active. [Fig. 6-
4(a)].

13

Serial Transfer

14

Serial Transfer
n The shift control signal is synchronized with

the clock and changes value just after the
negative edge of the clock.

n Each rising edge of the pulse causes a shift
in both registers. The fourth pulse changes
the shift control to 0 and the shift registers
are disabled.

15

Serial Transfer
Table 6-1
Serial-Transfer Example

1 0 0 11 1 0 1After T1

0 0 1 01 0 1 1Initial value

1 0 1 11 0 1 1After T4

0 1 1 00 1 1 1After T3

1 1 0 01 1 1 0After T2

Shift Register BShift Register ATiming Pulse

16

Serial Transfer
n In the parallel mode, information is available

from all bits can be transferred
simultaneously during one clock pulse.

n In the serial mode, the registers have a
single serial input and a single serial output.
The information us transferred one bit at a
time while the registers are shifted in the
same direction.

17

Serial Addition
n Operations in digital computers are usually

done in parallel because this is a faster
mode of operation.

n Serial operations are slower, but have the
advantage of requiring less equipment.

n The two binary numbers to be added serially
are stored in two shift registers.

n Bits are added one pair at a time through a
single full adder. [Fig. 6-5]

18

Serial Addition

19

Serial Addition
n By shifting the sum into A while the bits of A

are shifted out, it is possible to use one
register for storing both the augend and sum
bits.

n The carry out of the full adder is transferred
to a D flip-flop.

n The output of the D flip-flop is then used as
carry input for the next pair of significant
bits.

20

Serial Addition
n To show that serial operations can be

designed by means of sequential circuit
procedure, we will redesign the serial adder
using a state table.

n The serial outputs from registers are
designated by x and y.

n The sequential circuit proper has two inputs,
x and y, that provide a pair of significant bits,
an output S that generates the sum bit, and
flip-flop Q for storing the carry. [Table. 6-2]

21

Serial Addition
Table 6-2
State Table for serial Adder

0X11111
0X01011

0X01101
1X10001

X101110
X010010

X010100
X000000

KQJQSQyXQ

Flip-Flop
Inputs

OutputNext StateInputsPresent
State

22

Serial Addition
n The two flip-flop input equations and the

output equation can be simplified by means
of map to obtain
n JQ=xy
n KQ=x’y’=(x+y)’
n S=x⊕y⊕Q

n The circuit diagram is shown in [Fig. 6-6]

23

Serial Addition

24

Universal Shift Register
n A clear control to clear the register to 0.
n A clock input to synchronize the operations.
n A shift-right control to enable the shift

operation and the serial input and output lines
associated with the shift right.

n A shift-left control to enable the shift
operation and the serial input and output lines
associated with the shift left.

25

Universal Shift Register
n A parallel-load control to enable a parallel transfer

and the n input lines associated with the parallel
transfer.

n n parallel output lines.
n A control state that leaves the information in the

register unchanged in the presence of the clock.
n If the register has both shifts and parallel load

capabilities, it is referred to as a universal shift
register.

26

Universal Shift Register

27

Universal Shift Register

Parallel load11
Shift Left01
Shift right10
No Change00

S0S1
Register Operation

Mode Control

Table 6-3
Function Table for the Register of Fig. 6-7

28

Universal Shift Register
n Shift registers are often used to interface

digital system situated remotely from each
other.

n If the distance is far, it will be expensive to
use n lines to transmit the n bits in parallel.

n Transmitter performs a parallel-to-serial
conversion of data and the receiver does a
serial-to-parallel conversion.

29

6-3 Ripple Counters
n A register that goes through a prescribed

sequence of states upon the application of
input pulse is called a counter.

n A counter that follows the binary number
sequence is called a binary counter.

n Counters are available in two categories
n Ripple counters
n Synchronous counters

30

Binary Ripple Counter
n The output of each flip-flop is connected to

the C input of the next flip-flop in sequence.
n The flip-flop holding the last significant bit

receives the incoming count pulse.
n A complementing flip-flop can be obtained

from:
n JK flip-flop with the J and K inputs tied together.
n T flip-flop
n D flip-flop with the complement output

connected to the D input. [Fig. 6-8]

31

Binary Ripple Counter

32

Binary Ripple Counter

1110

0001

0110

1010

0010

1100

0100

1000

0000

A0A1A2A3

Table 6-3
Function Table for the Register of Fig. 6-7

33

BCD Ripple Counter
n A decimal counter follows a sequence of ten

states and returns to 0 after the count of 9.
n This is similar to a binary counter, except

that the state after 1001 is 0000.
n The operation of the counter can be

explained by a list of conditions for flip-flop
transitions.

34

BCD Ripple Counter

35

BCD Ripple Counter
n The four outputs are

designated by the
letter symbol Q with a
numeric subscript
equal to the binary
weight of the
corresponding bit in
the BCD code.

36

BCD Ripple Counter
n The BCD counter of [Fig. 6-9] is a decade

counter.
n To count in decimal from 0 to 999, we need

a three-decade counter. [Fig. 6-11]
n Multiple decade counters can be constructed

by connecting BCD counters ic cascade, one
for each decade.

37

BCD Ripple Counter

38

6-4 Synchronous Counters
n Synchronous counters are different from

ripple counters in that clock pulses are
applied to the inputs of all flip-flops.

n A common clock triggers all flip-flops
simultaneously rather than one at a time in
succession as in a ripple counter.

39

Binary Counter
n The design of a

synchronous binary
counter is so simple that is
no need to go through a
sequential logic design
process.

n Synchronous binary
counters have a regular
pattern and can be
constructed with
complementing flip-flop
and gates

40

Up-Down Binary Counter
n The two operations can

be combined in one
circuit to form a
counter capable of
counting up or down.

n It has an up control
input and down control
input.

41

BCD Counter
n Because of the return to 0 after a count of 9,

a BCD counter does not have a regular
pattern as in a straight binary count.

n To derive the circuit of a BCD synchronous
counter, it is necessary to go through a
sequential circuit design procedure.

42

BCD Counter
Table 6-5
State Table for BCD Counter

1000100001001

1000010010001

1111000011110

1000011100110

1100001101010

1000010100010

1110000101100

1000011000100

1100001001000

1000010000000

TQ1TQ2TQ4TQ8YQ1Q2Q4Q8Q1Q2Q4Q8

Flip-Flop inputsOutputNext StatePresent State

43

BCD Counter
n The flip flop input equations can be

simplified by means of maps. The simplified
functions are
n TQ1=1
n TQ2=Q8’Q1

n TQ4=Q2Q1

n TQ8=Q8Q1+Q4Q2Q1

n y=Q8Q1

n The circuit can be easily drawn with four T
flip-flops, five AND gates, and one OR gate.

44

Binary Counter with Parallel Load
n Counters employed in digital systems quite

often require a parallel load capability for
transferring an initial binary number into the
counter prior to count operation.

n The input load control when equal to 1
disables the count operation and causes a
transfer of data from the four data inputs
into the four flip-flops [Fig. 6-14]

45

Binary Counter with Parallel Load

46

Binary Counter with Parallel Load

0

0

1

X

Load

No change0↑1

Count next binary state1↑1

Load inputsX↑1

Clear to 0XX0

FunctionCountCLKClear

Table 6-6
Function Table for the Counter of Fig. 6-14

47

Binary Counter with Parallel Load
n A counter with parallel load can be used to

generate any desire count sequence.
n [Fig.6-15] shows two ways in which a

counter with parallel load is used to generate
the BCD count.

48

Binary Counter with Parallel Load

49

6-5 Other Counters
n Counters can be designed generate any

desire sequence of states.
n Counters are used to generate riming signals

to control the sequence of operations in a
digital system.

n Counters can be constructed also by means
of shift registers.

50

Counter with Unused States
n Once the circuit is designed and constructed,

outside interference may cause the circuit to
enter one of the unused state.

n If the unused states are treated as don’t-
care conditions, then once the circuit is
designed, it must be investigated to
determine the effect of the unused states

n The next state from an unused state can be
determined from the analysis of the circuit
after it is design.

51

Counter with Unused States

X01X1X000011

1XX10X011101

X1X00X101001

X01XX1001010

1XX1X0010100

X1X0X0100000

KCJCKBJBKAJACBACBA

Flip-Flop InputsNext statePresent State

Table 6-7
State Table for Counter

52

Counter with Unused States
n The count has a repeated sequence of six

states.
n The simplified equations are:

n JA=B KA=B
n JB=C KB=1
n JC=B’ KC=1

n The logic diagram and state diagram is
shown in [Fig. 6-16]

53

Counter with Unused States

54

Ring Counter
n A ring counter is a circular shift register with

only one flip-flop being set at any particular
time, all others are cleared.

n The single bit is shifted from one flip-flop to
the next to produce the sequence of timing
signals. [Fig. 6-17(a)] [Fig. 6-17(c)]

n The decoder shown in [Fig. 6-17(b)]
decodes the four states of the counter and
generates the required sequence of timing
signals

55

Ring Counter

56

Johnson Counter
n Generate the timing signals with a

combination of a shift register and a decoder,
which is called a Johnson counter.

n The number of states can be double if the
shift register is connect as a switch-tail ring
counter. [Fig. 6-18(a)]

n Starting from a cleared state, the switch-tail
ring counter goes through a sequence of
eight states, as shown in [Fig. 6-18(b)].

57

Johnson Counter

58

Johnson Counter
n A Johnson counter is a k-bit switch-tail ring

counter with 2k decoding gates to provide
outputs for 2k timing signals.

n The decoding of a k-bit switch-tail ring
counter to obtain 2k timing signals follows a
regular pattern.

n Johnson counters can be constructed for any
number of timing sequences.

59

6-6 HDL for Registers and
Counters

n Registers and counters can be describe in
HDL at either the behavioral or the structural
level.

n The various components are instantiated to
form a hierarchical description of the design
similar to a representation of a logic diagram.

60

Shift Register
//Behavioral description of universal shift register Fig. 6-7 and Table 6-3

Module shftreg (s1,s0,Pin,lfin,rtin,A,CLK,Clr);

input s1,s0 //Select inputs

input lfin, rtin; //Serial inputs

input CLk, clr; //Clock and Clear

input [3:0] Pin; //Parallel input

output [3:0] A; //Register output

reg [3:0] A;

always @ (posedge CLK or negedge Clr)

if (~Clr) A = 4’ b0000’

else

case ({s1,s0}) //No change

2’ b00: A = A; //Shift right

2’ b01: A = {rtin,A[3:1]}; //Shift left

2’ b10: A = {A[2:0],lfin}; //Parallel load input

2’ b11: A =Pin;

endcase

endmodule

61

Shift Register
//Structural description of Universal shift register(see Fig.6-7)
module SHFTREG (I,select,lfin,rtin,A,CLK,Clr);

input [3:0] I; //Parallel input
input [1:0] select; //Mode select
input lfin,rtin,CLK,Clr; //Serial inputs,clock,clear
output [3:0] A; //Parallel output

//Instantiate the four stages
stage ST0 (A[0],A[1],lfin,I[0],A[0],select,CLK,Clr);
stage ST1 (A[1],A[2],A[0],I[1],A[1],select,CLK,Clr);
stage ST2 (A[2],A[3],A[1],I[2],A[2],select,CLK,Clr);
stage ST3 (A[3],rtin,A[2],I[3],A[3],select,CLK,Clr);

endmodule

62

Shift Register
//One stage of shift register
module stage(i0,i1,i2,i3,Q,select,CLK,Clr);

input i0,i1,i2,i3,CLK,Clr;
input [1:0] select;
output Q;
reg Q;
reg D;

//4x1 multiplexer
always @ (i0 or i1 or i2 or i3 or select)

case (select)
2'b00: D = i0;
2'b01: D = i1;
2'b10: D = i2;
2'b11: D = i3;

endcase
//D flip-flop

always @ (posedge CLK or negedge Clr)
if (~Clr) Q = 1'b0;
else Q = D;

endmodule

63

Synchronous Counter
//Binary counter with parallel load See Figure 6-14 and Table 6-6
module counter (Count,Load,IN,CLK,Clr,A,CO);
input Count,Load,CLK,Clr;
input [3:0] IN; //Data input
output CO; //Output carry
output [3:0] A; //Data output
reg [3:0] A;
assign CO = Count & ~Load & (A == 4'b1111);
always @ (posedge CLK or negedge Clr)
if (~Clr) A = 4'b0000;
else if (Load) A = IN;
else if (Count) A = A + 1'b1;
else A = A; // no change, default condition

endmodule

64

Ripple Counter
//Ripple counter (See Fig. 6-8(b))
module ripplecounter (A0,A1,A2,A3,Count,Reset);

output A0,A1,A2,A3;
input Count,Reset;

//Instantiate complementing flip-flop
CF F0 (A0,Count,Reset);
CF F1 (A1,A0,Reset);
CF F2 (A2,A1,Reset);
CF F3 (A3,A2,Reset);

endmodule

//Complementing flip-flop with delay
//Input to D flip-flop = Q'
module CF (Q,CLK,Reset);

output Q;
input CLK,Reset;
reg Q;
always @ (negedge CLK or posedge Reset)

if (Reset) Q = 1'b0;
else Q = #2 (~Q); // Delay of 2 time units

endmodule

65

Ripple Counter
//Stimulus for testing ripple counter
module testcounter;

reg Count;
reg Reset;
wire A0,A1,A2,A3;

//Instantiate ripple counter
ripplecounter RC (A0,A1,A2,A3,Count,Reset);

always
#5 Count = ~Count;

initial
begin

Count = 1'b0;
Reset = 1'b1;

#4 Reset = 1'b0;
#165 $finish;

end
endmodule

66

Ripple Counter

