Number Representation
Number System :: The Basics

- We are accustomed to using the so-called decimal number system
 - Ten digits :: 0,1,2,3,4,5,6,7,8,9
 - Every digit position has a weight which is a power of 10
 - Base or radix is 10

Example:

\[234 = 2 \times 10^2 + 3 \times 10^1 + 4 \times 10^0 \]
\[250.67 = 2 \times 10^2 + 5 \times 10^1 + 0 \times 10^0 + 6 \times 10^{-1} + 7 \times 10^{-2} \]
Binary Number System

- Two digits:
 - 0 and 1
 - Every digit position has a weight which is a power of 2
 - Base or **radix** is 2

- Example:
 \[
 110 = 1 \times 2^2 + 1 \times 2^1 + 0 \times 2^0
 \]
 \[
 101.01 = 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 + 0 \times 2^{-1} + 1 \times 2^{-2}
 \]
Positional Number Systems (General)

Decimal Numbers:
- 10 Symbols \{0,1,2,3,4,5,6,7,8,9\}, Base or Radix is 10
- \(136.25 = 1 \times 10^2 + 3 \times 10^1 + 6 \times 10^0 + 2 \times 10^{-1} + 3 \times 10^{-2}\)
Positional Number Systems (General)

Decimal Numbers:
- 10 Symbols \(\{0,1,2,3,4,5,6,7,8,9\}\), Base or Radix is 10
- \(136.25 = 1 \times 10^2 + 3 \times 10^1 + 6 \times 10^0 + 2 \times 10^{-1} + 3 \times 10^{-2}\)

Binary Numbers:
- 2 Symbols \(\{0,1\}\), Base or Radix is 2
- \(101.01 = 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 + 0 \times 2^{-1} + 1 \times 2^{-2}\)
Positional Number Systems (General)

Decimal Numbers:
- 10 Symbols \{0,1,2,3,4,5,6,7,8,9\}, Base or Radix is 10
- \[136.25 = 1 \times 10^2 + 3 \times 10^1 + 6 \times 10^0 + 2 \times 10^{-1} + 5 \times 10^{-2}\]

Binary Numbers:
- 2 Symbols \{0,1\}, Base or Radix is 2
- \[101.01 = 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 + 0 \times 2^{-1} + 1 \times 2^{-2}\]

Octal Numbers:
- 8 Symbols \{0,1,2,3,4,5,6,7\}, Base or Radix is 8
- \[621.03 = 6 \times 8^2 + 2 \times 8^1 + 1 \times 8^0 + 0 \times 8^{-1} + 3 \times 8^{-2}\]
Positional Number Systems (General)

Decimal Numbers:
- 10 Symbols \{0,1,2,3,4,5,6,7,8,9\}, Base or Radix is 10
- \(136.25 = 1 \times 10^2 + 3 \times 10^1 + 6 \times 10^0 + 2 \times 10^{-1} + 3 \times 10^{-2}\)

Binary Numbers:
- 2 Symbols \{0,1\}, Base or Radix is 2
- \(101.01 = 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 + 0 \times 2^{-1} + 1 \times 2^{-2}\)

Octal Numbers:
- 8 Symbols \{0,1,2,3,4,5,6,7\}, Base or Radix is 8
- \(621.03 = 6 \times 8^2 + 2 \times 8^1 + 1 \times 8^0 + 0 \times 8^{-1} + 3 \times 8^{-2}\)

Hexadecimal Numbers:
- 16 Symbols \{0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F\}, Base is 16
- \(6AF.3C = 6 \times 16^2 + 10 \times 16^1 + 15 \times 16^0 + 3 \times 16^{-1} + 12 \times 16^{-2}\)
Binary-to-Decimal Conversion

- Each digit position of a binary number has a weight
 - Some power of 2
- A binary number:
 \[B = b_{n-1} \ b_{n-2} \ldots\ b_1 \ b_0 \ .\ b_{-1} \ b_{-2} \ldots\ b_{-m} \]

Corresponding value in decimal:

\[D = \sum_{i=-m}^{n-1} b_i \ 2^i \]
Examples

101011 \rightarrow 1 \times 2^5 + 0 \times 2^4 + 1 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 1 \times 2^0
= 43

(101011)_2 = (43)_{10}

.0101 \rightarrow 0 \times 2^{-1} + 1 \times 2^{-2} + 0 \times 2^{-3} + 1 \times 2^{-4}
= .3125

(.0101)_2 = (.3125)_{10}

101.11 \rightarrow 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 + 1 \times 2^{-1} + 1 \times 2^{-2}
= 5.75

(101.11)_2 = (5.75)_{10}
Decimal to Binary: Integer Part

- Consider the integer and fractional parts separately.
- For the integer part:
 - Repeatedly divide the given number by 2, and go on accumulating the remainders, until the number becomes zero.
 - Arrange the remainders in reverse order.

<table>
<thead>
<tr>
<th>Base</th>
<th>Numb</th>
<th>Rem</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>89</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>44</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>22</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>11</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

\[(89)_{10} = (1011001)_{2}\]
Decimal to Binary: Integer Part

- Consider the integer and fractional parts separately.
- For the integer part:
 - Repeatedly divide the given number by 2, and go on accumulating the remainders, until the number becomes zero.
 - Arrange the remainders in reverse order.

\[
\begin{array}{c|c|c}
\text{Base} & \text{Numb} & \text{Rem} \\
2 & 89 & 1 \\
2 & 44 & 1 \\
2 & 22 & 0 \\
2 & 11 & 0 \\
2 & 5 & 1 \\
2 & 2 & 1 \\
2 & 1 & 0 \\
\hline
& 0 & 1 \\
\end{array}
\]

\[
\begin{array}{c|c|c|c}
\text{Base} & \text{Numb} & \text{Rem} \\
2 & 66 & \text{ } \\
2 & 33 & 0 \\
2 & 16 & 1 \\
2 & 8 & 0 \\
2 & 4 & 0 \\
2 & 2 & 0 \\
2 & 1 & 0 \\
\hline
& 0 & 1 \\
\end{array}
\]

\[(89)_{10} = (1011001)_{2}\]

\[(66)_{10} = (1000010)_{2}\]
Decimal to Binary: Integer Part

- Consider the integer and fractional parts separately.
- For the integer part:
 - Repeatedly divide the given number by 2, and go on accumulating the remainders, until the number becomes zero.
 - Arrange the remainders in reverse order.

Table:

<table>
<thead>
<tr>
<th>Base</th>
<th>Numb</th>
<th>Rem</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>89</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>44</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>22</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>11</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

\[(89)_{10} = (1011001)_{2}\]

\[(66)_{10} = (1000010)_{2}\]

\[(239)_{10} = (11101111)_{2}\]
Decimal to Binary: Fraction Part

- Repeatedly multiply the given fraction by 2.
 - Accumulate the integer part (0 or 1).
 - If the integer part is 1, chop it off.
- Arrange the integer parts in the order they are obtained.

Example: 0.634

\[
.634 \times 2 = 1.268 \\
.268 \times 2 = 0.536 \\
.536 \times 2 = 1.072 \\
.072 \times 2 = 0.144 \\
.144 \times 2 = 0.288 \\
\vdots \\
\vdots \\
(.634)_{10} = (.10100\ldots)_{2}
\]
Decimal to Binary: Fraction Part

- Repeatedly multiply the given fraction by 2.
 - Accumulate the integer part (0 or 1).
 - If the integer part is 1, chop it off.
- Arrange the integer parts in the order they are obtained.

Example: 0.634

\[
\begin{align*}
.634 \times 2 &= 1.268 \\
.268 \times 2 &= 0.536 \\
.536 \times 2 &= 1.072 \\
.072 \times 2 &= 0.144 \\
.144 \times 2 &= 0.288 \\
\vdots
\end{align*}
\]

\[(.634)_{10} = (.10100 \ldots)_{2}\]

Example: 0.0625

\[
\begin{align*}
.0625 \times 2 &= 0.125 \\
.1250 \times 2 &= 0.250 \\
.2500 \times 2 &= 0.500 \\
.5000 \times 2 &= 1.000 \\
(.0625)_{10} &= (.0001)_{2}
\end{align*}
\]
Decimal to Binary: Fraction Part

- Repeatedly multiply the given fraction by 2.
 - Accumulate the integer part (0 or 1).
 - If the integer part is 1, chop it off.
- Arrange the integer parts in the order they are obtained.

Example: 0.634

\[
\begin{align*}
.634 \times 2 & = 1.268 \\
.268 \times 2 & = 0.536 \\
.536 \times 2 & = 1.072 \\
.072 \times 2 & = 0.144 \\
.144 \times 2 & = 0.288 \\
\vdots & \\
(0.634)_{10} & = (0.10100\ldots)_{2}
\end{align*}
\]

Example: 0.0625

\[
\begin{align*}
.0625 \times 2 & = 0.125 \\
.1250 \times 2 & = 0.250 \\
.2500 \times 2 & = 0.500 \\
.5000 \times 2 & = 1.000 \\
(0.0625)_{10} & = (0.0001)_{2}
\end{align*}
\]

\[
\begin{align*}
(37)_{10} & = (100101)_{2} \\
(0.0625)_{10} & = (0.0001)_{2} \\
(37.0625)_{10} & = (100101.0001)_{2}
\end{align*}
\]
Hexadecimal Number System

- A compact way of representing binary numbers
- 16 different symbols (radix = 16)

<table>
<thead>
<tr>
<th>Decimal</th>
<th>Hexadecimal</th>
<th>Binary 4-bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0000</td>
<td>0000</td>
</tr>
<tr>
<td>1</td>
<td>0001</td>
<td>0001</td>
</tr>
<tr>
<td>2</td>
<td>0010</td>
<td>0010</td>
</tr>
<tr>
<td>3</td>
<td>0011</td>
<td>0011</td>
</tr>
<tr>
<td>4</td>
<td>0100</td>
<td>0100</td>
</tr>
<tr>
<td>5</td>
<td>0101</td>
<td>0101</td>
</tr>
<tr>
<td>6</td>
<td>0110</td>
<td>0110</td>
</tr>
<tr>
<td>7</td>
<td>0111</td>
<td>0111</td>
</tr>
<tr>
<td>8</td>
<td>1000</td>
<td>1000</td>
</tr>
<tr>
<td>9</td>
<td>1001</td>
<td>1001</td>
</tr>
<tr>
<td>A</td>
<td>1010</td>
<td>1010</td>
</tr>
<tr>
<td>B</td>
<td>1011</td>
<td>1011</td>
</tr>
<tr>
<td>C</td>
<td>1100</td>
<td>1100</td>
</tr>
<tr>
<td>D</td>
<td>1101</td>
<td>1101</td>
</tr>
<tr>
<td>E</td>
<td>1110</td>
<td>1110</td>
</tr>
<tr>
<td>F</td>
<td>1111</td>
<td>1111</td>
</tr>
</tbody>
</table>
Binary-to-Hexadecimal Conversion

For the integer part,
- Scan the binary number from right to left
- Translate each group of four bits into the corresponding hexadecimal digit
 - Add leading zeros if necessary

For the fractional part,
- Scan the binary number from left to right
- Translate each group of four bits into the corresponding hexadecimal digit
 - Add trailing zeros if necessary
Example

1. \((1011\ 0100\ 0011)_2 = (B43)_{16}\)

2. \((10\ 1010\ 0001)_2 = (2A1)_{16}\)

3. \((.1000\ 010)_2 = (.84)_{16}\)

4. \((101\ .\ 0101\ 111)_2 = (5.5E)_{16}\)
Hexadecimal-to-Binary Conversion

- Translate every hexadecimal digit into its 4-bit binary equivalent

Examples:

- \((3A5)_{16} = (0011 1010 0101)_{2}\)
- \((12.3D)_{16} = (0001 0010 . 0011 1101)_{2}\)
- \((1.8)_{16} = (0001 . 1000)_{2}\)
Unsigned Binary Numbers

- An n-bit binary number
 \[B = b_{n-1} b_{n-2} \ldots b_2 b_1 b_0 \]
 - \(2^n\) distinct combinations are possible, 0 to \(2^n-1\).

- For example, for \(n = 3\), there are 8 distinct combinations
 - 000, 001, 010, 011, 100, 101, 110, 111

- Range of numbers that can be represented
 - \(n=8\) \(\Rightarrow\) 0 to \(2^8-1\) (255)
 - \(n=16\) \(\Rightarrow\) 0 to \(2^{16}-1\) (65535)
 - \(n=32\) \(\Rightarrow\) 0 to \(2^{32}-1\) (4294967295)
Signed Integer Representation

- Many of the numerical data items that are used in a program are signed (positive or negative)
 - Question:: How to represent sign?

- Three possible approaches:
 - Sign-magnitude representation
 - One’s complement representation
 - Two’s complement representation
Sign-magnitude Representation

For an n-bit number representation

- The most significant bit (MSB) indicates sign
 - 0 → positive
 - 1 → negative
- The remaining n-1 bits represent magnitude
Contd.

- Range of numbers that can be represented:
 - Maximum :: + \((2^{n-1} - 1)\)
 - Minimum :: \(- (2^{n-1} - 1)\)

- A problem:
 - Two different representations of zero
 - +0 \rightarrow 0 000....0
 - -0 \rightarrow 1 000....0
One’s Complement Representation

- Basic idea:
 - Positive numbers are represented exactly as in sign-magnitude form
 - Negative numbers are represented in 1’s complement form
- How to compute the 1’s complement of a number?
 - Complement every bit of the number (1 → 0 and 0 → 1)
 - MSB will indicate the sign of the number
 - 0 → positive
 - 1 → negative
Example :: n=4

<table>
<thead>
<tr>
<th>Binary</th>
<th>Decimal</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>+0</td>
</tr>
<tr>
<td>0001</td>
<td>+1</td>
</tr>
<tr>
<td>0010</td>
<td>+2</td>
</tr>
<tr>
<td>0011</td>
<td>+3</td>
</tr>
<tr>
<td>0100</td>
<td>+4</td>
</tr>
<tr>
<td>0101</td>
<td>+5</td>
</tr>
<tr>
<td>0110</td>
<td>+6</td>
</tr>
<tr>
<td>0111</td>
<td>+7</td>
</tr>
<tr>
<td>1000</td>
<td>-7</td>
</tr>
<tr>
<td>1001</td>
<td>-6</td>
</tr>
<tr>
<td>1010</td>
<td>-5</td>
</tr>
<tr>
<td>1011</td>
<td>-4</td>
</tr>
<tr>
<td>1100</td>
<td>-3</td>
</tr>
<tr>
<td>1101</td>
<td>-2</td>
</tr>
<tr>
<td>1110</td>
<td>-1</td>
</tr>
<tr>
<td>1111</td>
<td>-0</td>
</tr>
</tbody>
</table>

To find the representation of, say, -4, first note that

\[+4 = 0100 \]

\[-4 = \text{1’s complement of } 0100 = 1011 \]
Contd.

- Range of numbers that can be represented:
 - Maximum :: $+ (2^{n-1} - 1)$
 - Minimum :: $- (2^{n-1} - 1)$

- A problem:
 - Two different representations of zero.
 - $+0 \rightarrow 0000\ldots0$
 - $-0 \rightarrow 1111\ldots1$

- Advantage of 1’s complement representation
 - Subtraction can be done using addition
 - Leads to substantial saving in circuitry
Two’s Complement Representation

- Basic idea:
 - Positive numbers are represented exactly as in sign-magnitude form
 - Negative numbers are represented in 2’s complement form

- How to compute the 2’s complement of a number?
 - Complement every bit of the number (1 → 0 and 0 → 1), and then add one to the resulting number
 - MSB will indicate the sign of the number
 - 0 → positive
 - 1 → negative
Example: \(n=4 \)

\[
\begin{array}{c|c|c}
& \text{Binary} & \text{Decimal} \\
\hline
0000 & +0 & 1000 \rightarrow -8 \\
0001 & +1 & 1001 \rightarrow -7 \\
0010 & +2 & 1010 \rightarrow -6 \\
0011 & +3 & 1011 \rightarrow -5 \\
0100 & +4 & 1100 \rightarrow -4 \\
0101 & +5 & 1101 \rightarrow -3 \\
0110 & +6 & 1110 \rightarrow -2 \\
0111 & +7 & 1111 \rightarrow -1 \\
\end{array}
\]

To find the representation of, say, -4, first note that

\[
\begin{align*}
+4 & = 0100 \\
-4 & = 2\text{'s complement of } 0100 = 1011+1 = 1100
\end{align*}
\]

Rule: Value = \(-\text{msb} \times 2^{(n-1)} + [\text{unsigned value of rest}]\)

Example: 0110 = 0 + 6 = 6 \quad 1110 = -8 + 6 = -2
Contd.

- Range of numbers that can be represented:
 - Maximum :: \(+ (2^{n-1} - 1)\)
 - Minimum :: \(- 2^{n-1}\)

- Advantage:
 - Unique representation of zero
 - Subtraction can be done using addition
 - Leads to substantial saving in circuitry

- Almost all computers today use the 2’s complement representation for storing negative numbers
Contd.

- In C
 - short int
 - 16 bits \(\rightarrow \) + \(2^{15}-1\) to \(-2^{15}\)
 - int or long int
 - 32 bits \(\rightarrow \) + \(2^{31}-1\) to \(-2^{31}\)
 - long long int
 - 64 bits \(\rightarrow \) + \(2^{63}-1\) to \(-2^{63}\)
Adding Binary Numbers

Basic Rules:
- 0+0=0
- 0+1=1
- 1+0=1
- 1+1=0 (carry 1)

Example:
01101001
00110100

10011101
Subtraction Using Addition :: 1’s Complement

How to compute $A - B$?

- Compute the 1’s complement of B (say, B_1).
- Compute $R = A + B_1$
- If the carry obtained after addition is ‘1’
 - Add the carry back to R (called *end-around carry*)
 - That is, $R = R + 1$
 - The result is a positive number
- Else
 - The result is negative, and is in 1’s complement form
Example 1 :: 6 – 2

1’s complement of 2 = 1101

\[
\begin{array}{c}
6 :: 0110 \\
-2 :: 1101 \\
\hline
10011 \\
\hline
1 \\
0100 \\
\end{array}
\]

Assume 4-bit representations

Since there is a carry, it is added back to the result

The result is positive

End-around carry
Example 2 :: 3 – 5

1’s complement of 5 = 1010

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>::</td>
<td>0011</td>
<td>A</td>
</tr>
<tr>
<td>-5</td>
<td>::</td>
<td>1010</td>
<td>B₁</td>
</tr>
</tbody>
</table>

Since there is no carry, the result is negative.

1101 is the 1’s complement of 0010, that is, it represents –2

Assume 4-bit representations.
Subtraction Using Addition :: 2’s Complement

How to compute $A - B$?

- Compute the 2’s complement of B (say, B_2)
- Compute $R = A + B_2$
- If the carry obtained after addition is ‘1’
 - Ignore the carry
 - The result is a positive number

Else
- The result is negative, and is in 2’s complement form
Example 1 :: 6 – 2

2’s complement of 2 = 1101 + 1 = 1110

6 :: 0110
-2 :: 1110

Ignore carry

Assume 4-bit representations
Presence of carry indicates that the result is positive
No need to add the end-around carry like in 1’s complement

A
B₂
R

+4
Example 2 :: 3 – 5

2’s complement of 5 = 1010 + 1 = 1011

3 :: 0011 A
-5 :: 1011 B₂
1110 R

Assume 4-bit representations
Since there is no carry, the result is negative
1110 is the 2’s complement of 0010, that is, it represents –2

-2
2’s complement arithmetic: More Examples

- Example 1: 18-11 = ?
 - 18 is represented as 00010010
 - 11 is represented as 00001011
 - 1’s complement of 11 is 11110100
 - 2’s complement of 11 is 11110101
 - Add 18 to 2’s complement of 11

\[\begin{align*}
00010010 & \quad + \quad 11110101 \\
\hline
00000111 \text{ (with a carry of 1 which is ignored)} & \quad 00000111 \text{ is 7}
\end{align*} \]
Example 2: 7 - 9 = ?
- 7 is represented as 00000111
- 9 is represented as 00001001
 - 1’s complement of 9 is 11110110
 - 2’s complement of 9 is 11110111
- Add 7 to 2’s complement of 9

\[
\begin{array}{c}
00000111 \\
+ 11110111 \\
\hline
11111110
\end{array}
\]

11111110 is -2

11111110 (with a carry of 0 which is ignored)
Overflow/Underflow:

Adding two +ve (-ve) numbers should not produce a –ve (+ve) number. If it does, overflow (underflow) occurs.
Overflow/Underflow:

Adding two +ve (-ve) numbers should not produce a –ve (+ve) number. If it does, overflow (underflow) occurs.

Another equivalent condition: carry in and carry out from Most Significant Bit (MSB) differ.
Overflow/Underflow:

Adding two +ve (-ve) numbers should not produce a –ve (+ve) number. If it does, overflow (underflow) occurs.

Another equivalent condition: carry in and carry out from Most Significant Bit (MSB) differ.

\[
\begin{align*}
(64) \ 01000000 \\
(4) \ 00000100 \\
\hline \\
(68) \ 01000100
\end{align*}
\]

carry (out)(in) \\
0 0
Overflow/Underflow:

Adding two +ve (-ve) numbers should not produce a –ve (+ve) number. If it does, overflow (underflow) occurs.

Another equivalent condition: carry in and carry out from Most Significant Bit (MSB) differ.

\[
\begin{align*}
(64) & \quad 01000000 \\
(4) & \quad 00000100 \\
\hline
(68) & \quad 01000100 \\
\text{carry out (in)} & \quad 0 \quad 0
\end{align*}
\]

\[
\begin{align*}
(64) & \quad 01000000 \\
(96) & \quad 01100000 \\
\hline
(-96) & \quad 10100000 \\
\text{carry out in} & \quad 0 \quad 1
\end{align*}
\]

differ: overflow
Floating-point Numbers

- The representations discussed so far apply only to integers
 - Cannot represent numbers with fractional parts
- We can assume a decimal point before a signed number
 - In that case, pure fractions (without integer parts) can be represented
- We can also assume the decimal point somewhere in between
 - This lacks flexibility
 - Very large and very small numbers cannot be represented
A floating-point number F is represented by a doublet $<M,E>$:

$$F = M \times B^E$$

- $B \rightarrow$ exponent base (usually 2)
- $M \rightarrow$ mantissa
- $E \rightarrow$ exponent

- M is usually represented in 2’s complement form, with an implied binary point before it

For example,

In decimal, 0.235×10^6

In binary, 0.101011×2^{0110}
Example :: 32-bit representation

- M represents a 2’s complement fraction
 - $1 > M > -1$
- E represents the exponent (in 2’s complement form)
 - $127 > E > -128$

Points to note:
- The number of **significant digits** depends on the number of bits in M
 - 6 significant digits for 24-bit mantissa
- The **range** of the number depends on the number of bits in E
 - 10^{38} to 10^{-38} for 8-bit exponent.
A Warning

- The representation for floating-point numbers as shown is just for illustration.
- The actual representation is a little more complex.
- Example: IEEE 754 Floating Point format.
IEEE 754 Floating-Point Format (Single Precision)

<table>
<thead>
<tr>
<th>S (31)</th>
<th>E (Exponent) (30 ... 23)</th>
<th>M (Mantissa) (22 ... 0)</th>
</tr>
</thead>
</table>

- **S**: Sign (0 is +ve, 1 is –ve)
- **E**: Exponent (More bits gives a higher range)
- **M**: Mantissa (More bits means higher precision)

[8 bytes are used for double precision]

Value of a Normal Number:

\[(-1)^S \times (1.0 + 0.M) \times 2^{(E - 127)} \]
An example

<table>
<thead>
<tr>
<th>S</th>
<th>E (Exponent)</th>
<th>M (Mantissa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10001100</td>
<td>1101100000000000000000000</td>
</tr>
</tbody>
</table>

Value of a Normal Number:

\[
\begin{align*}
\text{Value} &= (-1)^S \times (1.0 + 0.M) \times 2^{(E - 127)} \\
&= (-1)^1 \times (1.0 + 0.1101100) \times 2^{(10001100 - 1111111)} \\
&= -1.1101100 \times 2^{1101} = -1110110000000000 \\
&= -15104.0 \text{ (in decimal)}
\end{align*}
\]
Representing 0.3

<table>
<thead>
<tr>
<th>S</th>
<th>E (Exponent)</th>
<th>M (Mantissa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(31)</td>
<td>(30 … 23)</td>
<td>(22 … 0)</td>
</tr>
</tbody>
</table>

0.3 (decimal)

\[= 0.0100100100100100100100100…\]

\[= 1.00100100100100100100100100… \times 2^{-2}\]

\[= 1.00100100100100100100100100… \times 2^{125-127}\]

\[= (-1)^S \times (1.0 + 0.M) \times 2^{(E - 127)}\]

| 0 | 01111101 | 00100100100100100100100 |

What are the largest and smallest numbers that can be represented in this scheme?
Representing 0

<table>
<thead>
<tr>
<th>S (31)</th>
<th>E (Exponent) (30 ... 23)</th>
<th>M (Mantissa) (22 ... 0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>00000000</td>
<td>00000000000000000000000000000000</td>
</tr>
<tr>
<td>1</td>
<td>00000000</td>
<td>00000000000000000000000000000000</td>
</tr>
</tbody>
</table>

Representing Inf (∞)

<table>
<thead>
<tr>
<th></th>
<th>E (Exponent)</th>
<th>M (Mantissa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>11111111</td>
<td>00000000000000000000000000000000</td>
</tr>
<tr>
<td>1</td>
<td>11111111</td>
<td>00000000000000000000000000000000</td>
</tr>
</tbody>
</table>

Representing NaN (Not a Number)

<table>
<thead>
<tr>
<th></th>
<th>E (Exponent)</th>
<th>M (Mantissa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>11111111</td>
<td>Non zero</td>
</tr>
<tr>
<td>1</td>
<td>11111111</td>
<td>Non zero</td>
</tr>
</tbody>
</table>
Representation of Characters

- Many applications have to deal with non-numerical data.
 - Characters and strings
 - There must be a standard mechanism to represent alphanumeric and other characters in memory
- Three standards in use:
 - Extended Binary Coded Decimal Interchange Code (EBCDIC)
 - Used in older IBM machines
 - American Standard Code for Information Interchange (ASCII)
 - Most widely used today
 - UNICODE
 - Used to represent all international characters.
 - Used by Java
ASCII Code

- Each individual character is numerically encoded into a unique 7-bit binary code
 - A total of 2^7 or 128 different characters
 - A character is normally encoded in a byte (8 bits), with the MSB not been used.
- The binary encoding of the characters follow a regular ordering
 - Digits are ordered consecutively in their proper numerical sequence (0 to 9)
 - Letters (uppercase and lowercase) are arranged consecutively in their proper alphabetic order
Some Common ASCII Codes

<table>
<thead>
<tr>
<th>Character</th>
<th>Hexadecimal (H)</th>
<th>Decimal (D)</th>
</tr>
</thead>
<tbody>
<tr>
<td>'A'</td>
<td>41 (H)</td>
<td>65 (D)</td>
</tr>
<tr>
<td>'B'</td>
<td>42 (H)</td>
<td>66 (D)</td>
</tr>
<tr>
<td>'Z'</td>
<td>5A (H)</td>
<td>90 (D)</td>
</tr>
<tr>
<td>'a'</td>
<td>61 (H)</td>
<td>97 (D)</td>
</tr>
<tr>
<td>'b'</td>
<td>62 (H)</td>
<td>98 (D)</td>
</tr>
<tr>
<td>'z'</td>
<td>7A (H)</td>
<td>122 (D)</td>
</tr>
<tr>
<td>'0'</td>
<td>30 (H)</td>
<td>48 (D)</td>
</tr>
<tr>
<td>'1'</td>
<td>31 (H)</td>
<td>49 (D)</td>
</tr>
<tr>
<td>'9'</td>
<td>39 (H)</td>
<td>57 (D)</td>
</tr>
<tr>
<td>'('</td>
<td>28 (H)</td>
<td>40 (D)</td>
</tr>
<tr>
<td>'+'</td>
<td>2B (H)</td>
<td>43 (D)</td>
</tr>
<tr>
<td>'?'</td>
<td>3F (H)</td>
<td>63 (D)</td>
</tr>
<tr>
<td>'\n'</td>
<td>0A (H)</td>
<td>10 (D)</td>
</tr>
<tr>
<td>'\0'</td>
<td>00 (H)</td>
<td>00 (D)</td>
</tr>
</tbody>
</table>
Character Strings

- Two ways of representing a sequence of characters in memory

- The first location contains the number of characters in the string, followed by the actual characters

- The characters follow one another, and is terminated by a special delimiter
String Representation in C

- In C, the second approach is used
 - The ‘\0’ character is used as the string delimiter

- Example:
 “Hello” ➔ Hello \0

- A null string “” occupies one byte in memory.
 - Only the ‘\0’ character