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Divide, Floating Point, Pentium Bug
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Review: MULTIPLY HARDWARE Version 1

°64-bit Multiplicand reg, 64-bit ALU, 64-bit Product reg, 
32-bit multiplier reg

Product

Multiplier

Multiplicand

64-bit ALU

Shift Left

Shift Right

Write Control

32 bits

64 bits

64 bits
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Write Control
Shift Right

32-bit ALU

Multiplicand

Product

32 bits

64 bits

Review: MULTIPLY HARDWARE Version 3

°32-bit Multiplicand reg, 32 -bit ALU, 64-bit Product reg, 
(0-bit Multiplier reg)

ECE468 ALU-III.4 2002-2-27

Review: Booth’s Algorithm Insight

Current Bit Bit to the Right Explanation Example

1 0 Beginning of a run of 1s 0001111000

1 1 Middle of a run of 1s 0001111000

0 1 End of a run of 1s 0001111000

0 0 Middle of a run of 0s 0001111000

Originally for Speed since shift faster than add for his machine

0 1 1 1 1 0
beginning of runend of run

middle of run
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Review: Booth’s Algorithm

1. Depending on the current and previous bits, do one of the following:

00: a. Middle of a string of 0s, so no arithmetic operations.
01: b. End of a string of 1s, so add the multiplicand to the left 

half of the product.
10: c. Beginning of a string of 1s, so subtract the multiplicand 

from the left half of the product.
11: d. Middle of a string of 1s, so no arithmetic operation.

2.As in the previous algorithm, shift the Product register right (arith) 1 bit.

Multiplicand Product (2 x 3)
0010 0000 0011 0

Multiplicand Product (2 x -3)
0010 0000 1101 0
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Divide: Paper & Pencil

1001 Quotient

Divisor 1000 1001010 Dividend
–1000

10
101
1010

–1000
10 Remainder

°See how big a number can be subtracted, creating quotient
bit on each step

• Binary => 1 * divisor or 0 * divisor

°Dividend = Quotient x Divisor + Remainder

°3 versions of divide, successive refinement
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DIVIDE HARDWARE Version 1

°64-bit Divisor reg, 64-bit ALU, 64-bit Remainder reg, 
32-bit Quotient reg

Remainder

Quotient

Divisor

64-bit ALU

Shift Right

Shift Left

Write Control

32 bits

64 bits

64 bits
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1. Subtract the Divisor register from the
Remainder register, and place the result in the 

Remainder register.

Test Remainder
Remainder < 0Remainder >=0

2a. Shift the Quotient register to the left 
setting the new rightmost bit to 1.

2b. Restore the original value by adding the Divisor reg
to the Remainder  reg   and place the sum in the 
Remainder reg. Also shift the Quotient register to 
the left, setting the new LSB to 0 

3. Shift the Divisor register right1 bit.

33rd repetition?
No: < 33 repetitions

Done
Yes: 33 repetitions

StartDivide Algorithm Version 1
°Takes n+1 steps for n-bit Quotient & Rem

Quotient Divisor Remainder
0000 0010 0000 0000 0111
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Observations on Divide Version 1

°1/2 bits in divisor always 0
=> 1/2 of 64-bit adder is wasted
=> 1/2 of divisor is wasted

°Instead of shifting divisor to right, shift remainder to left?

°1st step cannot produce a 1 in quotient bit ( otherwise too big)
=> switch order to shift first and then subtract, can save 1 iteration
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Quotient
Shift Left

Write Control
Shift Left

32-bit ALU

Divisor

Remainder

32 bits

32 bits

64 bits

DIVIDE HARDWARE Version 2

°32-bit Divisor reg, 32 -bit ALU, 64-bit Remainder reg, 
32-bit Quotient reg
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Test Remainder
Remainder < 0Remainder >=0

.3a. Shift the Quotient register to the 
Left setting the new rightmost bit to 1.

Done

StartDivide Algorithm Version 2
Quotient Divisor Remainder
0000 0010 0000 0111

1. Shift the Remainder register left 1 bit

2. Subtract the Divisor register from the left half
of the Remainder register, and place the result in
the left half of the Remainder register

3b. Restore the original value by adding the
Divisor reg to the left half of the Remainder 
reg and place the sum in the left half of the
Remainder reg. Also, shift the Quotient reg
to the left, setting the new LSB to 0.

32nd  repetition?
No:  < 32 repetitions

Yes:   32 repetitions
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Observations on Divide Version 2

°Eliminate Quotient register by combining with Remainder as shifted left
• Start by shifting the Remainder left as before. 
• Thereafter loop contains only two steps because the shifting of the 

Remainder register shifts both the remainder in the left half and the 
quotient in the right half 

• The consequence of combining the two registers together and the 
new order of the operations in the loop is that the remainder will 
shifted left one time too many.

• Thus the final correction step must shift back only the remainder in 
the left half of the register
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Write Control
Shift Left

32-bit ALU

Divisor

Remainder

32 bits

64 bits

DIVIDE HARDWARE Version 3

°32-bit Divisor reg, 32 -bit ALU, 64-bit Remainder reg, 
(0-bit Quotient reg)
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Divide Algorithm Version 3
Divisor Remainder
0010 0000 0111

Test Remainder
Remainder < 0Remainder >=0

.3a. Shift the Remainder register to the 
Left setting the new rightmost bit to 1

Done

Start

1. Shift the Remainder register left 1 bit

2. Subtract the Divisor register from the left half
of the Remainder register, and place the result in
the left half of the Remainder register

3b. Restore the original value by adding the
Divisor reg to the left half of the Remainder 
reg and place the sum in the left half of the  
Remainder reg. Also, shift the Remainder
reg  to the left, setting the new rightmost  to 0

32nd  repetition?
No:  < 32 repetitions

Yes:   32 repetitions
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Observations on Divide Version 3

°Same Hardware as Multiply: just need ALU to add or subtract, and 63-
bit register to shift left or shift right

°Hi and Lo registers in MIPS combine to act as 64-bit register for multiply 
and divide

°Signed Divides: Simplest is to remember signs, make positive, and 
complement quotient and remainder if necessary

• Note: Dividend and Remainder must have same sign (Uniqueness)
• Note: Quotient negated if Divisor sign & Dividend sign disagree
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Floating-Point
°What can be represented in N bits?

• Unsigned 0 to 2    - 1
• 2s Complement - 2 to 2    - 1
• 1s Complement -2    + 1 to 2    - 1
• Excess M  -M to 2 - M - 1

� (E = e + M)  also called biased notation
• BCD 0 to          10    - 1

°But, what about?
• very large numbers? 9,349,398,989,787,762,244,859,087,678
• very small number? 0.0000000000000000000000045691
• rationals  2/3
• irrationals
• transcendentals e, š

N

N-1 N-1

N-1 N-1

N

N/4

2
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Recall Scientific Notation

6.02 x 10                               1.673 x 10
23 -24

exponent

radix (base)Mantissa

decimal point

Sign, magnitude

Sign, magnitude

IEEE F.P.      ±±±± 1.M x 2E - 127

Issues:
°°°° Arithmetic (+, -, *, / )
°°°° Representation, Normal form
°°°° Range and Precision
°°°° Rounding
°°°° Exceptions (e.g., divide by zero, overflow, underflow)
°°°° Errors
°°°° Properties  ( negation, inversion, if A > B then A - B > 0 )
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Floating-Point Arithmetic
Representation of floating point numbers in IEEE 754 standard:

single precision
1 8 23

sign

Exponent:
excess 127
binary integer

mantissa:
Sign + Magnitude, normalized
binary significand w/ hidden
integer bit:  1.M

actual exponent is
e = E - 127 

S E M

N = (-1)   2           (1.M)
S E-127

0  < E < 255, not      0 ≤≤≤≤ E ≤≤≤≤ 255
127 < e < 128, not –127 ≤≤≤≤ e ≤≤≤≤ 128
00000000 is reserved for 0; 11111111 is reserved for infinity.

e.g.  0 = 0 00000000 0 . . . 0             -1.5 = 1 01111111 10 . . . 0

Magnitude of numbers that can be represented is in the range:

2
-126

(1.0) to 2 127 (2 - 223)

which is approximately:

1.8 x 10 -38 to 3.40 x 10 38
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Normalized Numbers
Significand is left adjusted  -->  as large as possible,

exponent is as small as possible

E.g., B = 2  , p = 3: (once used in IBM 360/370, p.280)
4

0   0110   0000 . 0110 1100 = 0.6C 0   0101   0110 . 1100 0000 = 6.C0
denormalized normalized

In B = 2, the significand MSB is always 1 when the significand is left
adjusted.  So not necessary to store this "hidden" bit in memory.

0   011   1.01   1 0   011   .011
w/o hidden bit w/ hidden bit = improved precision

Within the FPU, the hidden bit is inserted because of the denormalization
step that precedes FP add/subtract.

Smallest normal #:    0   0 ... 0   .0 ... 01      hidden bit

0   0 ... 0  1.0 ... 00     no hidden bit

"1"

2 -bias
must distinguish from 
zero with special form
0 0…0 .0…00, no hidden bit
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Double Precision for greater precision and larger range

Representation of floating point numbers in double precision:

single precision
1 11 20+32

sign

Exponent:
excess 1023
binary integer

mantissa:
Sign + Magnitude, normalized
binary significand w/ hidden
integer bit:  1.Mactual exponent is

e = E - 1023

S E M

N = (-1)    2           (1.M)
S E-1023

0 < E < 2047

0 = 0 00000000 0 . . . 0             -1.5 = 1 01111111 10 . . . 0

Questions:

� Why is FP number normalized? (for accuracy)
� Why is FP not accurate for large numbers?
� Why is S put on leftmost? (P.278)
� Why is E represented by biased notation? (P.278)
� Why is E put before M? (P.278)
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Basic Addition Algorithm (pp 280-285)

For addition (or subtraction) this translates into the following steps:

(1)  compute Ye - Xe, supposing Ye > Xe.

(2)  right shift Xm that many positions to form Xm 2

(3)  compute Xm 2            + Ym

if representation demands normalization, then a normalization step
follows:

(4)  left shift result, decrement result exponent and check for underflow
right shift result, increment result exponent and check for overflow
continue until MSB of data is 1   (NOTE: Hidden bit in IEEE Standard)

(5)  If significand is longer than allowed, round significand

(6) if result is 0 mantissa, may need to set the exponent to zero by special  
step

Xe-Ye

Xe-Ye
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Basic Addition Algorithm (continue) P284

Done

2. Add the significands

4. Round the significand to the appropriate
number of bits

Still normalized?

Start

Yes

No

No

Y esOverflow or
underflow?

Exception

3. Normalize the sum, either shifting right and
incrementing the exponent or shifting left

and decrementing the exponent

1. Compare the exponents of the two numbers.
Shift the smaller number to the right until its
exponent would match the larger exponent

Example (p282)

0.5 X – 0.4375 = (1.000x2-1 ) X (-1.110x2-2 )  

Step1: -1.110x2-2 ���� -0.111x2-1

Step2: 1.000x2-1 +( -0.111x2-1 ) 
= 0.001x2-1

Step3: 0.001x2-1 ���� 1.000x2–4

Step4:  None
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Datapath for FPU (See Fig. 4.45 for more details)

E1 E2

adder

E

AC MQ

adder

DR

Mantissa
Unit

Data Out

Data In

Exp
Unit

Addition Algorithm:

AC<n    -1:0>, DR<n    -1:0>, E1<n    -1:0>, E2<n    -1:0>, E<n    -1:0>,

AC_OVERFLOW, ERROR

Begin:      AC_OVERFLOW := 0;  ERROR := 0;
Load:        E1:= Xe;  AC := Xm;

E2 := Ye;  DR := Ym;

m m m m m
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Extra Bits

"Floating Point numbers are like piles of sand; every time you move one 
you lose a little sand, but you pick up a little dirt."

How many extra bits?   
IEEE: As if computed the result exactly and rounded.

Addition:
1.xxxxx 1.xxxxx 1.xxxxx

+ 1.xxxxx 0.001xxxxx 0.01xxxxx
1x.xxxxy               1.xxxxxyyy              1x.xxxxyyy

post-normalization          pre-normalization          pre and post
°Guard Digits: digits to the right of the first p digits of significand to 

guard against loss of digits – can later be shifted left into first P places 
during normalization.

°Addition: carry-out shifted in

°Subtraction: borrow digit and guard

°Multiplication: carry and guard,   division requires guard



ECE468 ALU-III.25 2002-2-27

Rounding Digits
normalized result, but some non-zero digits to the right of the

significand -->  the number should be rounded

E.g., B = 10, p = 3: 0  2  1.69

0  0  7.85

0  2  1.61

=  1.6900  * 10

= - .0785 * 10

=   1.6115 * 10

2-bias

2-bias

2-bias
-

one round digit must be carried to the right of the guard digit so that 
after a normalizing left shift, the result can be rounded, according
to the value of the round digit

IEEE Standard: (p. 300)
four rounding modes:   round to nearest  (default)

round towards plus infinity (always round up)
round towards minus infinity(always round down)
round towards 0

round to nearest:
round digit < B/2  then truncate

> B/2  then round up (add 1 to ULP)
= B/2  then round to nearest even digit

it can be shown that this strategy minimizes the mean error
introduced by rounding
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Infinity and NaNs (pp300-301)

result of operation overflows, i.e., is larger than the largest number that
can be represented

overflow is not the same as divide by zero (raises a different exception)

+/- infinity S  1 . . . 1  0 . . . 0

It may make sense to do further computations with infinity
e.g.,  X/0  >  Y may be a valid comparison

Not a number, but not infinity (e.q. sqrt(-4))
invalid operation exception (unless operation is = or =)

NaN S  1 . . . 1  non-zero

NaNs propagate: f(NaN) = NaN
HW decides what goes here
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Exceptions
Invalid operation:

result of operation is a NaN (except = or =)
inf. +/- inf.;  0 * inf;  0/0;  inf./inf.;  x remainder y where y = 0;
sqrt(x) where x < 0, x≠≠≠≠+/- inf.

Overflow:
result of operation is larger than largest representable #
flushed to +/- inf. if overflow exception is not enabled

Divide by 0:
x/0 where x = 0, +/- inf.;  
flushed to +/- inf. if divide by zero exception not enabled

Underflow:
subnormal result(see p300) OR non-zero result underflows to 0

Inexact:
rounded result not the actual result (rounding error = 0)

IEEE Standard --> specifies defaults and allows traps to permit
user to handle the exception

contrast with the more usual result of aborting the computation
altogether!
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Pentium Bug

°Pentium FP Divider uses algorithm to generate multiple bits per steps
• FPU uses most significant bits of divisor & dividend/remainder to 

guess next 2 bits of quotient
• Guess is taken from lookup table: -2, -1,0,+1,+2 (if previous guess 

too large a reminder, quotient is adjusted in subsequent pass of -2)
• Guess is multiplied by divisor and subtracted from remainder to 

generate a new remainder
• Called SRT division after 3 people who came up with idea

°Pentium table uses 7 bits of remainder + 4 bits of divisor = 211 entries

°5 entries of divisors omitted: 1.0001, 1.0100, 1.0111, 1.1010, 1.1101 from 
PLA (fix is just add 5 entries back into PLA: cost $200,000)

°Self correcting nature of SRT => string of 1s must follow error
• e.g., 1011 1111 1111 1111 1111 1011 1000 0010 0011 0111 1011 0100 

(2.99999892918)

°Since indexed also by divisor/remainder bits, sometimes bug doesn’t 
show even with dangerous divisor value
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Pentium bug appearance

°First 11 bits to right of decimal point always correct: bits 12 to 52 where 
bug can occur (4th to 15th decimal digits)

°FP divisors near integers 3, 9, 15, 21, 27 are dangerous ones:
• 3.0 >  d � 3.0 - 36 x 2–22 , 9.0 > d � 9.0 - 36 x 2–20

• 15.0 > d � 15.0 - 36 x 2–20 , 21.0 > d � 21.0 - 36 x 2–19

°0.333333 x 9 could be problem

°In Microsoft Excel, try (4,195,835 / 3,145,727) * 3,145,727 
• = 4,195,835 => not a Pentium with bug
• = 4,195,579 => Pentium with bug

(assuming Excel doesn’t already have SW bug patch)
• Rare since error in 5th significant digit
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Pentium Bug Time line

°June 1994: Intel discovers bug in Pentium: takes months to make 
change,  reverify, put into production: plans good chips in January 1995 
4 to 5 million Pentiums produced with bug

°Scientist suspects errors and posts on Internet in September 1994

°Nov. 22 Intel Press release: “Can make errors in 9th digit ... Most 
engineers and financial analysts need only 4 of 5 digits. Theoretical 
mathematician should be concerned. ...  So far only heard from one.”

°Intel claims happens once in 27,000 years for typical spread sheet user:
• 1000 divides/day x error rate assuming numbers random

°Dec 12: IBM claims happens once per 24 days: Bans Pentium sales
• 5000 divides/second x 15 minutes = 4.2 million divides/day
• IBM statement: http://www.ibm.com/Features/pentium.html
• Intel said it regards IBM's decision to halt shipments of its  Pentium 

processor-based systems as unwarranted.
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Pentium jokes

°Q:  What's another name for the "Intel Inside" sticker they put on 
Pentiums?

A:  Warning label.

°Q: Have you heard the new name Intel has chosen for the Pentium?

A: the Intel Inacura.

°Q:  According to Intel, the Pentium conforms to the IEEE standards for 
floating point arithmetic.  If you fly in aircraft designed using a Pentium, 
what is the correct pronunciation of "IEEE"?

A:   Aaaaaaaiiiiiiiiieeeeeeeeeeeee!

°TWO OF TOP TEN NEW INTEL SLOGANS FOR THE PENTIUM

9.9999973251   It's a FLAW, Dammit, not a Bug

7.9999414610   Nearly 300 Correct Opcodes
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Pentium conclusion: Dec. 21, 1994 $500M write-off
“To owners of Pentium processor-based computers and the PC community:

We at Intel wish to sincerely apologize for our handling of the  recently
publicized Pentium processor flaw.

The Intel Inside symbol means that your computer has a  microprocessor 
second to none in quality and performance.  Thousands  of Intel employees 
work very hard to ensure that this is true.  But  no microprocessor is ever 
perfect.

What Intel continues to believe is technically an extremely  minor problem 
has taken on a life of its own.  Although Intel firmly  stands behind the 
quality of the current version of the Pentium  processor, we recognize that 
many users have concerns.

We want to resolve these concerns.

Intel will exchange the current version of the Pentium processor  for an
updated version, in which this floating-point divide flaw is  corrected, for
any owner who requests it, free of charge anytime  during the life of their
computer.  Just call 1-800-628-8686.”

Sincerely,
Andrew S. Grove           Craig R. Barrett             Gordon E. Moore
President /CEO             Executive Vice President     Chairman of the Board

&COO
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Summary

°Bits have no inherent meaning: operations determine whether they are 
really ASCII characters, integers, floating point numbers

°Divide can use same hardware as multiply: Hi & Lo registers in MIPS

°Floating point basically follows paper and pencil method of scientific 
notation using integer algorithms for multiply and divide of significands

°IEEE 754 requires good rounding; special values for NaN, Infinity

°Pentium: Difference between bugs that board designers must know 
about and bugs that potentially affect all users 

• Why not make public complete description of bugs in later 
category? 

• $200,000 cost in June to repair design
• $500,000,000 loss in December in profits to replace bad parts
• How much to repair Intel’s reputation?

°What is technologists responsibility in disclosing bugs?


