
Carnegie Mellon

1

Design of Digital Circuits 2014
Srdjan Capkun
Frank K. Gürkaynak

Adapted from Digital Design and Computer Architecture, David Money Harris & Sarah L. Harris ©2007 Elsevier

http://www.syssec.ethz.ch/education/Digitaltechnik_14

Verilog for Sequential Circuits

Carnegie Mellon

2

What will we learn?

 Short summary of Verilog Basics

 Sequential Logic in Verilog

 Using Sequential Constructs for Combinational Design

 Finite State Machines

Carnegie Mellon

3

Summary: Defining a module

 A module is the main building block in Verilog

 We first need to declare:

 Name of the module

 Types of its connections (input, output)

 Names of its connections

a
b y
c

Verilog

Module

Carnegie Mellon

4

Summary: Defining a module

module example (a, b, c, y);
input a;
input b;
input c;
output y;

// here comes the circuit description

endmodule

a
b y
c

Verilog

Module

Carnegie Mellon

5

Summary: What if we have busses ?

input [31:0] a; // a[31], a[30] .. a[0]
output [15:8] b1; // b1[15], b1[14] .. b1[8]
output [7:0] b2; // b2[7], b2[6] .. b1[0]
input clk;

 You can also define multi-bit busses.

 [range_start : range_end]

Carnegie Mellon

6

Structural HDL Example

module top (A, SEL, C, Y);
input A, SEL, C;
output Y;
wire n1;

// alternative
small i_first (A, SEL, n1);

/* Shorter instantiation,
pin order very important */

// any pin order, safer choice
small i2 (.B(C),

.Y(Y),

.A(n1));

endmodule

module small (A, B, Y);
input A;
input B;
output Y;

// description of small

endmodule

Short Instantiation

Carnegie Mellon

7

Summary: Bitwise Operators

module gates(input [3:0] a, b,
output [3:0] y1, y2, y3, y4, y5);

/* Five different two-input logic
gates acting on 4 bit busses */

assign y1 = a & b; // AND
assign y2 = a | b; // OR
assign y3 = a ^ b; // XOR
assign y4 = ~(a & b); // NAND
assign y5 = ~(a | b); // NOR

endmodule

Carnegie Mellon

8

Summary: Conditional Assignment

module mux2(input [3:0] d0, d1,
input s,
output [3:0] y);

assign y = s ? d1 : d0;
// if (s) then y=d1 else y=d0;

endmodule

 ? : is also called a ternary operator because it operates on
3 inputs:

 s

 d1

 d0.

Carnegie Mellon

9

Summary: How to Express numbers ?

N’Bxx

8’b0000_0001

 (N) Number of bits

 Expresses how many bits will be used to store the value

 (B) Base

 Can be b (binary), h (hexadecimal), d (decimal), o (octal)

 (xx) Number

 The value expressed in base, apart from numbers it can also have X and Z
as values.

 Underscore _ can be used to improve readability

Carnegie Mellon

10

Summary: Verilog Number Representation

Verilog Stored Number Verilog Stored Number

4’b1001 1001 4’d5 0101

8’b1001 0000 1001 12’hFA3 1111 1001 0011

8’b0000_1001 0000 1001 8’o12 00 001 010

8’bxX0X1zZ1 XX0X 1ZZ1 4’h7 0111

‘b01 0000 .. 0001 12’h0 0000 0000 0000

Carnegie Mellon

11

Precedence of Operations in Verilog

Highest ~ NOT

*, /, % mult, div, mod

+, - add,sub

<<, >> shift

<<<, >>> arithmetic shift

<, <=, >, >= comparison

==, != equal, not equal

&, ~& AND, NAND

^, ~^ XOR, XNOR

|, ~| OR, NOR

Lowest ?: ternary operator

Carnegie Mellon

12

Sequential Logic in Verilog

 Define blocks that have memory

 Flip-Flops, Latches, Finite State Machines

 Sequential Logic is triggered by a ‘CLOCK’ event

 Latches are sensitive to level of the signal

 Flip-flops are sensitive to the transitioning of clock

 Combinational constructs are not sufficient

 We need new constructs:

 always

 initial

Carnegie Mellon

13

always Statement, Defining Processes

always @ (sensitivity list)
statement;

 Whenever the event in the sensitivity list occurs, the
statement is executed

Carnegie Mellon

14

Example: D Flip-Flop

module flop(input clk,
input [3:0] d,
output reg [3:0] q);

always @ (posedge clk)
q <= d; // pronounced “q gets d”

endmodule

Carnegie Mellon

15

Example: D Flip-Flop

module flop(input clk,
input [3:0] d,
output reg [3:0] q);

always @ (posedge clk)
q <= d; // pronounced “q gets d”

endmodule

 The posedge defines a rising edge (transition from 0 to 1).

 This process will trigger only if the clk signal rises.

 Once the clk signal rises: the value of d will be copied to q

Carnegie Mellon

16

Example: D Flip-Flop

module flop(input clk,
input [3:0] d,
output reg [3:0] q);

always @ (posedge clk)
q <= d; // pronounced “q gets d”

endmodule

 ‘assign’ statement is not used within always block

 The <= describes a ‘non-blocking’ assignment

 We will see the difference between ‘blocking assignment’ and
‘non-blocking’ assignment in a while

Carnegie Mellon

17

Example: D Flip-Flop

module flop(input clk,
input [3:0] d,
output reg [3:0] q);

always @ (posedge clk)
q <= d; // pronounced “q gets d”

endmodule

 Assigned variables need to be declared as reg

 The name reg does not necessarily mean that the value is
a register. (It could be, it does not have to be).

 We will see examples later

Carnegie Mellon

18

D Flip-Flop with Asynchronous Reset

module flop_ar (input clk,
input reset,
input [3:0] d,
output reg [3:0] q);

always @ (posedge clk, negedge reset)
begin

if (reset == ‘0’) q <= 0; // when reset
else q <= d; // when clk

end
endmodule

 In this example: two events can trigger the process:

 A rising edge on clk

 A falling edge on reset

Carnegie Mellon

19

D Flip-Flop with Asynchronous Reset

module flop_ar (input clk,
input reset,
input [3:0] d,
output reg [3:0] q);

always @ (posedge clk, negedge reset)
begin

if (reset == ‘0’) q <= 0; // when reset
else q <= d; // when clk

end
endmodule

 For longer statements a begin end pair can be used

 In this example it was not necessary

 The always block is highlighted

Carnegie Mellon

20

D Flip-Flop with Asynchronous Reset

module flop_ar (input clk,
input reset,
input [3:0] d,
output reg [3:0] q);

always @ (posedge clk, negedge reset)
begin

if (reset == ‘0’) q <= 0; // when reset
else q <= d; // when clk

end
endmodule

 First reset is checked, if reset is 0, q is set to 0.

 This is an ‘asynchronous’ reset as the reset does not care what
happens with the clock

 If there is no reset then normal assignment is made

Carnegie Mellon

21

D Flip-Flop with Synchronous Reset

module flop_sr (input clk,
input reset,
input [3:0] d,
output reg [3:0] q);

always @ (posedge clk)
begin

if (reset == ‘0’) q <= 0; // when reset
else q <= d; // when clk

end
endmodule

 The process is only sensitive to clock

 Reset only happens when the clock rises. This is a ‘synchronous’
reset

 A small change, has a large impact on the outcome

Carnegie Mellon

22

D Flip-Flop with Enable and Reset

module flop_ar (input clk,
input reset,
input en,
input [3:0] d,
output reg [3:0] q);

always @ (posedge clk. negedge reset)
begin

if (reset == ‘0’) q <= 0; // when reset
else if (en) q <= d; // when en AND clk

end
endmodule

 A flip-flop with enable and reset

 Note that the en signal is not in the sensitivity list

 Only when “clk is rising” AND “en is 1” data is stored

Carnegie Mellon

23

Example: D Latch

module latch (input clk,
input [3:0] d,
output reg [3:0] q);

always @ (clk, d)
if (clk) q <= d; // latch is transparent when

// clock is 1
endmodule

lat

q[3:0]

q[3:0]
[3:0]d[3:0]

[3:0]

clk

[3:0]
D[3:0] [3:0]

Q[3:0]
C

Carnegie Mellon

24

Summary: Sequential Statements so far

 Sequential statements are within an ‘always’ block

 The sequential block is triggered with a change in the
sensitivity list

 Signals assigned within an always must be declared as
reg

 We use <= for (non-blocking) assignments and do not use
‘assign’ within the always block.

Carnegie Mellon

25

Summary: Basics of always Statements

module example (input clk,
input [3:0] d,
output reg [3:0] q);

wire [3:0] normal; // standard wire
reg [3:0] special; // assigned in always

always @ (posedge clk)
special <= d; // first FF array

assign normal = ~ special; // simple assignment

always @ (posedge clk)
q <= normal; // second FF array

endmodule

 You can have many always blocks

Carnegie Mellon

26

Summary: Basics of always Statements

module example (input clk,
input [3:0] d,
output reg [3:0] q);

wire [3:0] normal; // standard wire
reg [3:0] special; // assigned in always

always @ (posedge clk)
special <= d; // first FF array

assign normal = ~ special; // simple assignment

always @ (posedge clk)
q <= normal; // second FF array

endmodule

 Assignments are different within always blocks

Carnegie Mellon

27

Why does an always Statement Memorize?

module flop (input clk,
input [3:0] d,
output reg [3:0] q);

always @ (posedge clk)
begin

q <= d; // when clk rises copy d to q
end

endmodule

 This statement describes what happens to signal q

 … but what happens when clock is not rising?

Carnegie Mellon

28

Why does an always Statement Memorize?

module flop (input clk,
input [3:0] d,
output reg [3:0] q);

always @ (posedge clk)
begin

q <= d; // when clk rises copy d to q
end

endmodule

 This statement describes what happens to signal q

 … but what happens when clock is not rising?

 The value of q is preserved (memorized)

Carnegie Mellon

29

Why does an always Statement Memorize?

module comb (input inv,
input [3:0] data,
output reg [3:0] result);

always @ (inv, data) // trigger with inv, data
if (inv) result <= ~data;// result is inverted data
else result <= data; // result is data

endmodule

 This statement describes what happens to signal result

 When inv is 1, result is ~data

 What happens when inv is not 1 ?

Carnegie Mellon

30

Why does an always Statement Memorize?

module comb (input inv,
input [3:0] data,
output reg [3:0] result);

always @ (inv, data) // trigger with inv, data
if (inv) result <= ~data;// result is inverted data
else result <= data; // result is data

endmodule

 This statement describes what happens to signal result

 When inv is 1, result is ~data

 When inv is not 1, result is data

 Circuit is combinational (no memory)

 The output (result) is defined for all possible inputs (inv data)

Carnegie Mellon

31

always Blocks for Combinational Circuits

 If the statements define the signals completely, nothing is
memorized, block becomes combinational.

 Care must be taken, it is easy to make mistakes and unintentionally
describe memorizing elements (latches).

 Always blocks allow powerful statements
 if .. then .. else

 case

 Use always blocks only if it makes your job easier

Carnegie Mellon

32

Always Statement is not Always Practical…

reg [31:0] result;
wire [31:0] a, b, comb;
wire sel,

always @ (a, b, sel) // trigger with a, b, sel
if (sel) result <= a; // result is a
else result <= b; // result is b

assign comb = sel ? a : b;

endmodule

 Both statements describe the same multiplexer

 In this case, the always block is more work

Carnegie Mellon

33

Sometimes Always Statements are Great

module sevensegment (input [3:0] data,
output reg [6:0] segments);

always @ (*) // * is short for all signals
case (data) // case statement
0: segments = 7'b111_1110; // when data is 0
1: segments = 7'b011_0000; // when data is 1
2: segments = 7'b110_1101;
3: segments = 7'b111_1001;
4: segments = 7'b011_0011;
5: segments = 7'b101_1011;
// etc etc
default: segments = 7'b000_0000; // required

endcase

endmodule

Carnegie Mellon

34

The case Statement

 Like if .. then .. else can only be used in always
blocks

 The result is combinational only if the output is defined for
all cases

 Did we mention this before ?

 Always use a default case to make sure you did not
forget a case (which would infer a latch)

 Use casez statement to be able to check for don’t cares

 See book page 202, example 4.28

Carnegie Mellon

35

Non-blocking and Blocking Statements

always @ (a)
begin

a <= 2’b01;
b <= a;

// all assignments are made here
// b is not (yet) 2’b01
end

always @ (a)
begin

a = 2’b01;
// a is 2’b01

b = a;
// b is now 2’b01 as well
end

Non-blocking Blocking

 Values are assigned at the
end of the block.

 All assignments are made
in parallel, process flow is
not-blocked.

 Value is assigned
immediately.

 Process waits until the first
assignment is complete, it
blocks progress.

Carnegie Mellon

36

Why use (Non)-Blocking Statements

 There are technical reasons why both are required

 It is out of the scope of this course to discuss these

 Blocking statements allow sequential descriptions

 More like a programming language

 If the sensitivity list is correct, blocks with non-blocking
statements will always evaluate to the same result

 It may require some additional iterations

Carnegie Mellon

37

Example: Blocking Statements

always @ (*)
begin
p = a ^ b ; // p = 0
g = a & b ; // g = 0
s = p ^ cin ; // s = 0
cout = g | (p & cin) ; // cout = 0

end

 Assume all inputs are initially ‘0’

Carnegie Mellon

38

Example: Blocking Statements

always @ (*)
begin
p = a ^ b ; // p = 1
g = a & b ; // g = 0
s = p ^ cin ; // s = 1
cout = g | (p & cin) ; // cout = 0

end

 The process triggers

 All values are updated in order

 At the end, s = 1

 Now a changes to ‘1’

Carnegie Mellon

39

Same Example: Non-Blocking Statements

always @ (*)
begin
p <= a ^ b ; // p = 0
g <= a & b ; // g = 0
s <= p ^ cin ; // s = 0
cout <= g | (p & cin) ; // cout = 0

end

 Assume all inputs are initially ‘0’

Carnegie Mellon

40

Same Example: Non-Blocking Statements

always @ (*)
begin
p <= a ^ b ; // p = 1
g <= a & b ; // g = 0
s <= p ^ cin ; // s = 0
cout <= g | (p & cin) ; // cout = 0

end

 The process triggers

 All assignments are concurrent

 When s is being assigned, p is still 0, result is still 0

 Now a changes to ‘1’

Carnegie Mellon

41

Same Example: Non-Blocking Statements

always @ (*)
begin
p <= a ^ b ; // p = 1
g <= a & b ; // g = 0
s <= p ^ cin ; // s = 1
cout <= g | (p & cin) ; // cout = 0

end

 Since there is a change in p, process triggers again

 This time s is calculated with p=1

 The result is correct after the second iteration

 After the first iteration p has changed to ‘1’ as well

Carnegie Mellon

42

Rules for Signal Assignment

 Use always @(posedge clk) and non-blocking
assignments (<=) to model synchronous sequential logic

always @ (posedge clk)

q <= d; // nonblocking

 Use continuous assignments (assign …)to model simple
combinational logic.

assign y = a & b;

Carnegie Mellon

43

Rules for Signal Assignment (cont)

 Use always @ (*) and blocking assignments (=) to
model more complicated combinational logic where the
always statement is helpful.

 Do not make assignments to the same signal in more than
one always statement or continuous assignment
statement

Carnegie Mellon

44

Finite State Machines (FSMs)

 Each FSM consists of three separate parts:

 next state logic

 state register

 output logic

CLK
M Nk knext

state

logic

output

logic
inputs outputs

state
next

state

Carnegie Mellon

45

FSM Example: Divide by 3

S 0

S 1

S 2

Carnegie Mellon

46

FSM in Verilog, Definitions

module divideby3FSM (input clk,
input reset,
output q);

reg [1:0] state, nextstate;

parameter S0 = 2'b00;
parameter S1 = 2'b01;
parameter S2 = 2'b10;

 We define state and nextstate as 2-bit reg

 The parameter descriptions are optional, it makes reading
easier

Carnegie Mellon

47

FSM in Verilog, State Register

// state register
always @ (posedge clk, posedge reset)

if (reset) state <= S0;
else state <= nextstate;

 This part defines the state register (memorizing process)

 Sensitive to only clk, reset

 In this example reset is active when ‘1’

Carnegie Mellon

48

FSM in Verilog, Next State Calculation

// next state logic
always @ (*)

case (state)
S0: nextstate = S1;
S1: nextstate = S2;
S2: nextstate = S0;
default: nextstate = S0;

endcase

 Based on the value of state we determine the value of
nextstate

 An always .. case statement is used for simplicity.

Carnegie Mellon

49

FSM in Verilog, Output Assignments

// output logic
assign q = (state == S0);

 In this example, output depends only on state

 Moore type FSM

 We used a simple combinational assign

Carnegie Mellon

50

FSM in Verilog, Whole Code

module divideby3FSM (input clk, input reset, output q);
reg [1:0] state, nextstate;

parameter S0 = 2'b00;
parameter S1 = 2'b01;
parameter S2 = 2'b10;

always @ (posedge clk, posedge reset) // state register
if (reset) state <= S0;
else state <= nextstate;

always @ (*) // next state logic
case (state)

S0: nextstate = S1;
S1: nextstate = S2;
S2: nextstate = S0;
default: nextstate = S0;

endcase
assign q = (state == S0); // output logic

endmodule

Carnegie Mellon

51

What Did We Learn?

 Basics of Defining Sequential Circuits in Verilog

 Always statement

 Is needed for defining memorizing elements (flip-flops, latches)

 Can also be used to define combinational circuits

 Blocking vs Non-blocking statements

 = assigns the value immediately

 <= assigns the value at the end of the block

 Writing FSMs

 Next state calculation

 Determining outputs

 State assignment

