
Carnegie Mellon

1

Design of Digital Circuits 2014
Srdjan Capkun
Frank K. Gürkaynak

Adapted from Digital Design and Computer Architecture, David Money Harris & Sarah L. Harris ©2007 Elsevier

http://www.syssec.ethz.ch/education/Digitaltechnik_14

Verilog for Sequential Circuits

Carnegie Mellon

2

What will we learn?

 Short summary of Verilog Basics

 Sequential Logic in Verilog

 Using Sequential Constructs for Combinational Design

 Finite State Machines

Carnegie Mellon

3

Summary: Defining a module

 A module is the main building block in Verilog

 We first need to declare:

 Name of the module

 Types of its connections (input, output)

 Names of its connections

a
b y
c

Verilog

Module

Carnegie Mellon

4

Summary: Defining a module

module example (a, b, c, y);
input a;
input b;
input c;
output y;

// here comes the circuit description

endmodule

a
b y
c

Verilog

Module

Carnegie Mellon

5

Summary: What if we have busses ?

input [31:0] a; // a[31], a[30] .. a[0]
output [15:8] b1; // b1[15], b1[14] .. b1[8]
output [7:0] b2; // b2[7], b2[6] .. b1[0]
input clk;

 You can also define multi-bit busses.

 [range_start : range_end]

Carnegie Mellon

6

Structural HDL Example

module top (A, SEL, C, Y);
input A, SEL, C;
output Y;
wire n1;

// alternative
small i_first (A, SEL, n1);

/* Shorter instantiation,
pin order very important */

// any pin order, safer choice
small i2 (.B(C),

.Y(Y),

.A(n1));

endmodule

module small (A, B, Y);
input A;
input B;
output Y;

// description of small

endmodule

Short Instantiation

Carnegie Mellon

7

Summary: Bitwise Operators

module gates(input [3:0] a, b,
output [3:0] y1, y2, y3, y4, y5);

/* Five different two-input logic
gates acting on 4 bit busses */

assign y1 = a & b; // AND
assign y2 = a | b; // OR
assign y3 = a ^ b; // XOR
assign y4 = ~(a & b); // NAND
assign y5 = ~(a | b); // NOR

endmodule

Carnegie Mellon

8

Summary: Conditional Assignment

module mux2(input [3:0] d0, d1,
input s,
output [3:0] y);

assign y = s ? d1 : d0;
// if (s) then y=d1 else y=d0;

endmodule

 ? : is also called a ternary operator because it operates on
3 inputs:

 s

 d1

 d0.

Carnegie Mellon

9

Summary: How to Express numbers ?

N’Bxx

8’b0000_0001

 (N) Number of bits

 Expresses how many bits will be used to store the value

 (B) Base

 Can be b (binary), h (hexadecimal), d (decimal), o (octal)

 (xx) Number

 The value expressed in base, apart from numbers it can also have X and Z
as values.

 Underscore _ can be used to improve readability

Carnegie Mellon

10

Summary: Verilog Number Representation

Verilog Stored Number Verilog Stored Number

4’b1001 1001 4’d5 0101

8’b1001 0000 1001 12’hFA3 1111 1001 0011

8’b0000_1001 0000 1001 8’o12 00 001 010

8’bxX0X1zZ1 XX0X 1ZZ1 4’h7 0111

‘b01 0000 .. 0001 12’h0 0000 0000 0000

Carnegie Mellon

11

Precedence of Operations in Verilog

Highest ~ NOT

*, /, % mult, div, mod

+, - add,sub

<<, >> shift

<<<, >>> arithmetic shift

<, <=, >, >= comparison

==, != equal, not equal

&, ~& AND, NAND

^, ~^ XOR, XNOR

|, ~| OR, NOR

Lowest ?: ternary operator

Carnegie Mellon

12

Sequential Logic in Verilog

 Define blocks that have memory

 Flip-Flops, Latches, Finite State Machines

 Sequential Logic is triggered by a ‘CLOCK’ event

 Latches are sensitive to level of the signal

 Flip-flops are sensitive to the transitioning of clock

 Combinational constructs are not sufficient

 We need new constructs:

 always

 initial

Carnegie Mellon

13

always Statement, Defining Processes

always @ (sensitivity list)
statement;

 Whenever the event in the sensitivity list occurs, the
statement is executed

Carnegie Mellon

14

Example: D Flip-Flop

module flop(input clk,
input [3:0] d,
output reg [3:0] q);

always @ (posedge clk)
q <= d; // pronounced “q gets d”

endmodule

Carnegie Mellon

15

Example: D Flip-Flop

module flop(input clk,
input [3:0] d,
output reg [3:0] q);

always @ (posedge clk)
q <= d; // pronounced “q gets d”

endmodule

 The posedge defines a rising edge (transition from 0 to 1).

 This process will trigger only if the clk signal rises.

 Once the clk signal rises: the value of d will be copied to q

Carnegie Mellon

16

Example: D Flip-Flop

module flop(input clk,
input [3:0] d,
output reg [3:0] q);

always @ (posedge clk)
q <= d; // pronounced “q gets d”

endmodule

 ‘assign’ statement is not used within always block

 The <= describes a ‘non-blocking’ assignment

 We will see the difference between ‘blocking assignment’ and
‘non-blocking’ assignment in a while

Carnegie Mellon

17

Example: D Flip-Flop

module flop(input clk,
input [3:0] d,
output reg [3:0] q);

always @ (posedge clk)
q <= d; // pronounced “q gets d”

endmodule

 Assigned variables need to be declared as reg

 The name reg does not necessarily mean that the value is
a register. (It could be, it does not have to be).

 We will see examples later

Carnegie Mellon

18

D Flip-Flop with Asynchronous Reset

module flop_ar (input clk,
input reset,
input [3:0] d,
output reg [3:0] q);

always @ (posedge clk, negedge reset)
begin

if (reset == ‘0’) q <= 0; // when reset
else q <= d; // when clk

end
endmodule

 In this example: two events can trigger the process:

 A rising edge on clk

 A falling edge on reset

Carnegie Mellon

19

D Flip-Flop with Asynchronous Reset

module flop_ar (input clk,
input reset,
input [3:0] d,
output reg [3:0] q);

always @ (posedge clk, negedge reset)
begin

if (reset == ‘0’) q <= 0; // when reset
else q <= d; // when clk

end
endmodule

 For longer statements a begin end pair can be used

 In this example it was not necessary

 The always block is highlighted

Carnegie Mellon

20

D Flip-Flop with Asynchronous Reset

module flop_ar (input clk,
input reset,
input [3:0] d,
output reg [3:0] q);

always @ (posedge clk, negedge reset)
begin

if (reset == ‘0’) q <= 0; // when reset
else q <= d; // when clk

end
endmodule

 First reset is checked, if reset is 0, q is set to 0.

 This is an ‘asynchronous’ reset as the reset does not care what
happens with the clock

 If there is no reset then normal assignment is made

Carnegie Mellon

21

D Flip-Flop with Synchronous Reset

module flop_sr (input clk,
input reset,
input [3:0] d,
output reg [3:0] q);

always @ (posedge clk)
begin

if (reset == ‘0’) q <= 0; // when reset
else q <= d; // when clk

end
endmodule

 The process is only sensitive to clock

 Reset only happens when the clock rises. This is a ‘synchronous’
reset

 A small change, has a large impact on the outcome

Carnegie Mellon

22

D Flip-Flop with Enable and Reset

module flop_ar (input clk,
input reset,
input en,
input [3:0] d,
output reg [3:0] q);

always @ (posedge clk. negedge reset)
begin

if (reset == ‘0’) q <= 0; // when reset
else if (en) q <= d; // when en AND clk

end
endmodule

 A flip-flop with enable and reset

 Note that the en signal is not in the sensitivity list

 Only when “clk is rising” AND “en is 1” data is stored

Carnegie Mellon

23

Example: D Latch

module latch (input clk,
input [3:0] d,
output reg [3:0] q);

always @ (clk, d)
if (clk) q <= d; // latch is transparent when

// clock is 1
endmodule

lat

q[3:0]

q[3:0]
[3:0]d[3:0]

[3:0]

clk

[3:0]
D[3:0] [3:0]

Q[3:0]
C

Carnegie Mellon

24

Summary: Sequential Statements so far

 Sequential statements are within an ‘always’ block

 The sequential block is triggered with a change in the
sensitivity list

 Signals assigned within an always must be declared as
reg

 We use <= for (non-blocking) assignments and do not use
‘assign’ within the always block.

Carnegie Mellon

25

Summary: Basics of always Statements

module example (input clk,
input [3:0] d,
output reg [3:0] q);

wire [3:0] normal; // standard wire
reg [3:0] special; // assigned in always

always @ (posedge clk)
special <= d; // first FF array

assign normal = ~ special; // simple assignment

always @ (posedge clk)
q <= normal; // second FF array

endmodule

 You can have many always blocks

Carnegie Mellon

26

Summary: Basics of always Statements

module example (input clk,
input [3:0] d,
output reg [3:0] q);

wire [3:0] normal; // standard wire
reg [3:0] special; // assigned in always

always @ (posedge clk)
special <= d; // first FF array

assign normal = ~ special; // simple assignment

always @ (posedge clk)
q <= normal; // second FF array

endmodule

 Assignments are different within always blocks

Carnegie Mellon

27

Why does an always Statement Memorize?

module flop (input clk,
input [3:0] d,
output reg [3:0] q);

always @ (posedge clk)
begin

q <= d; // when clk rises copy d to q
end

endmodule

 This statement describes what happens to signal q

 … but what happens when clock is not rising?

Carnegie Mellon

28

Why does an always Statement Memorize?

module flop (input clk,
input [3:0] d,
output reg [3:0] q);

always @ (posedge clk)
begin

q <= d; // when clk rises copy d to q
end

endmodule

 This statement describes what happens to signal q

 … but what happens when clock is not rising?

 The value of q is preserved (memorized)

Carnegie Mellon

29

Why does an always Statement Memorize?

module comb (input inv,
input [3:0] data,
output reg [3:0] result);

always @ (inv, data) // trigger with inv, data
if (inv) result <= ~data;// result is inverted data
else result <= data; // result is data

endmodule

 This statement describes what happens to signal result

 When inv is 1, result is ~data

 What happens when inv is not 1 ?

Carnegie Mellon

30

Why does an always Statement Memorize?

module comb (input inv,
input [3:0] data,
output reg [3:0] result);

always @ (inv, data) // trigger with inv, data
if (inv) result <= ~data;// result is inverted data
else result <= data; // result is data

endmodule

 This statement describes what happens to signal result

 When inv is 1, result is ~data

 When inv is not 1, result is data

 Circuit is combinational (no memory)

 The output (result) is defined for all possible inputs (inv data)

Carnegie Mellon

31

always Blocks for Combinational Circuits

 If the statements define the signals completely, nothing is
memorized, block becomes combinational.

 Care must be taken, it is easy to make mistakes and unintentionally
describe memorizing elements (latches).

 Always blocks allow powerful statements
 if .. then .. else

 case

 Use always blocks only if it makes your job easier

Carnegie Mellon

32

Always Statement is not Always Practical…

reg [31:0] result;
wire [31:0] a, b, comb;
wire sel,

always @ (a, b, sel) // trigger with a, b, sel
if (sel) result <= a; // result is a
else result <= b; // result is b

assign comb = sel ? a : b;

endmodule

 Both statements describe the same multiplexer

 In this case, the always block is more work

Carnegie Mellon

33

Sometimes Always Statements are Great

module sevensegment (input [3:0] data,
output reg [6:0] segments);

always @ (*) // * is short for all signals
case (data) // case statement
0: segments = 7'b111_1110; // when data is 0
1: segments = 7'b011_0000; // when data is 1
2: segments = 7'b110_1101;
3: segments = 7'b111_1001;
4: segments = 7'b011_0011;
5: segments = 7'b101_1011;
// etc etc
default: segments = 7'b000_0000; // required

endcase

endmodule

Carnegie Mellon

34

The case Statement

 Like if .. then .. else can only be used in always
blocks

 The result is combinational only if the output is defined for
all cases

 Did we mention this before ?

 Always use a default case to make sure you did not
forget a case (which would infer a latch)

 Use casez statement to be able to check for don’t cares

 See book page 202, example 4.28

Carnegie Mellon

35

Non-blocking and Blocking Statements

always @ (a)
begin

a <= 2’b01;
b <= a;

// all assignments are made here
// b is not (yet) 2’b01
end

always @ (a)
begin

a = 2’b01;
// a is 2’b01

b = a;
// b is now 2’b01 as well
end

Non-blocking Blocking

 Values are assigned at the
end of the block.

 All assignments are made
in parallel, process flow is
not-blocked.

 Value is assigned
immediately.

 Process waits until the first
assignment is complete, it
blocks progress.

Carnegie Mellon

36

Why use (Non)-Blocking Statements

 There are technical reasons why both are required

 It is out of the scope of this course to discuss these

 Blocking statements allow sequential descriptions

 More like a programming language

 If the sensitivity list is correct, blocks with non-blocking
statements will always evaluate to the same result

 It may require some additional iterations

Carnegie Mellon

37

Example: Blocking Statements

always @ (*)
begin
p = a ^ b ; // p = 0
g = a & b ; // g = 0
s = p ^ cin ; // s = 0
cout = g | (p & cin) ; // cout = 0

end

 Assume all inputs are initially ‘0’

Carnegie Mellon

38

Example: Blocking Statements

always @ (*)
begin
p = a ^ b ; // p = 1
g = a & b ; // g = 0
s = p ^ cin ; // s = 1
cout = g | (p & cin) ; // cout = 0

end

 The process triggers

 All values are updated in order

 At the end, s = 1

 Now a changes to ‘1’

Carnegie Mellon

39

Same Example: Non-Blocking Statements

always @ (*)
begin
p <= a ^ b ; // p = 0
g <= a & b ; // g = 0
s <= p ^ cin ; // s = 0
cout <= g | (p & cin) ; // cout = 0

end

 Assume all inputs are initially ‘0’

Carnegie Mellon

40

Same Example: Non-Blocking Statements

always @ (*)
begin
p <= a ^ b ; // p = 1
g <= a & b ; // g = 0
s <= p ^ cin ; // s = 0
cout <= g | (p & cin) ; // cout = 0

end

 The process triggers

 All assignments are concurrent

 When s is being assigned, p is still 0, result is still 0

 Now a changes to ‘1’

Carnegie Mellon

41

Same Example: Non-Blocking Statements

always @ (*)
begin
p <= a ^ b ; // p = 1
g <= a & b ; // g = 0
s <= p ^ cin ; // s = 1
cout <= g | (p & cin) ; // cout = 0

end

 Since there is a change in p, process triggers again

 This time s is calculated with p=1

 The result is correct after the second iteration

 After the first iteration p has changed to ‘1’ as well

Carnegie Mellon

42

Rules for Signal Assignment

 Use always @(posedge clk) and non-blocking
assignments (<=) to model synchronous sequential logic

always @ (posedge clk)

q <= d; // nonblocking

 Use continuous assignments (assign …)to model simple
combinational logic.

assign y = a & b;

Carnegie Mellon

43

Rules for Signal Assignment (cont)

 Use always @ (*) and blocking assignments (=) to
model more complicated combinational logic where the
always statement is helpful.

 Do not make assignments to the same signal in more than
one always statement or continuous assignment
statement

Carnegie Mellon

44

Finite State Machines (FSMs)

 Each FSM consists of three separate parts:

 next state logic

 state register

 output logic

CLK
M Nk knext

state

logic

output

logic
inputs outputs

state
next

state

Carnegie Mellon

45

FSM Example: Divide by 3

S 0

S 1

S 2

Carnegie Mellon

46

FSM in Verilog, Definitions

module divideby3FSM (input clk,
input reset,
output q);

reg [1:0] state, nextstate;

parameter S0 = 2'b00;
parameter S1 = 2'b01;
parameter S2 = 2'b10;

 We define state and nextstate as 2-bit reg

 The parameter descriptions are optional, it makes reading
easier

Carnegie Mellon

47

FSM in Verilog, State Register

// state register
always @ (posedge clk, posedge reset)

if (reset) state <= S0;
else state <= nextstate;

 This part defines the state register (memorizing process)

 Sensitive to only clk, reset

 In this example reset is active when ‘1’

Carnegie Mellon

48

FSM in Verilog, Next State Calculation

// next state logic
always @ (*)

case (state)
S0: nextstate = S1;
S1: nextstate = S2;
S2: nextstate = S0;
default: nextstate = S0;

endcase

 Based on the value of state we determine the value of
nextstate

 An always .. case statement is used for simplicity.

Carnegie Mellon

49

FSM in Verilog, Output Assignments

// output logic
assign q = (state == S0);

 In this example, output depends only on state

 Moore type FSM

 We used a simple combinational assign

Carnegie Mellon

50

FSM in Verilog, Whole Code

module divideby3FSM (input clk, input reset, output q);
reg [1:0] state, nextstate;

parameter S0 = 2'b00;
parameter S1 = 2'b01;
parameter S2 = 2'b10;

always @ (posedge clk, posedge reset) // state register
if (reset) state <= S0;
else state <= nextstate;

always @ (*) // next state logic
case (state)

S0: nextstate = S1;
S1: nextstate = S2;
S2: nextstate = S0;
default: nextstate = S0;

endcase
assign q = (state == S0); // output logic

endmodule

Carnegie Mellon

51

What Did We Learn?

 Basics of Defining Sequential Circuits in Verilog

 Always statement

 Is needed for defining memorizing elements (flip-flops, latches)

 Can also be used to define combinational circuits

 Blocking vs Non-blocking statements

 = assigns the value immediately

 <= assigns the value at the end of the block

 Writing FSMs

 Next state calculation

 Determining outputs

 State assignment

