
© Don Thomas, 1998, Page 1

1© Don Thomas, 1998, 1

The Verilog Hardware Description Language

� These slides were created by Prof. Don Thomas at Ca rnegie
Mellon University, and are adapted here with permis sion.

� The Verilog Hardware Description Language, Fifth Edi tion,
by Donald Thomas and Phillip Moorby is available fro m
Springer, http://www.springer.com.

2© Don Thomas, 1998, 2

Verilog Overview

�Verilog is a concurrent language
� Aimed at modeling hardware — optimized for it!
� Typical of hardware description languages (HDLs), i t:

- provides for the specification of concurrent activi ties
- stands on its head to make the activities look like they happened

at the same time
� Why?

- allows for intricate timing specifications

�A concurrent language allows for:
� Multiple concurrent “elements”
� An event in one element to cause activity in anothe r. (An event is an

output or state change at a given time)
- based on interconnection of the element’s ports

� Further execution to be delayed
- until a specific event occurs

3© Don Thomas, 1998, 3

Simulation of Digital Systems

�Simulation —
� What do you do to test a software program you write ?

- Give it some inputs, and see if it does what you ex pect
- When done testing, is there any assurance the progr am is bug

free? — NO!
- But, to the extent possible, you have determined th at the

program does what you want it to do

� Simulation tests a model of the system you wish to build
- Is the design correct? Does it implement the intended function

correctly? For instance, is it a UART
� Stick in a byte and see if the UART model shifts it out correctly

- Also, is it the correct design?
� Might there be some other functions the UART could do?

4© Don Thomas, 1998, 4

Simulation of Digital Systems

� Simulation checks two properties
� functional correctness — is the logic correct

- correct design, and design correct
� timing correctness — is the logic/interconnect timing correct

- e.g. are the set-up times met?

� It has all the limitations of software testing
� Have I tried all the cases?
� Have I exercised every path? Every option?

© Don Thomas, 1998, Page 2

5© Don Thomas, 1998, 5

Modern Design Methodology

always
mumble
mumble
blah
blah

Synthesizable Verilog

Synthesis

clb 1
clb 2

Place
and

Route

gates, gates, gates, …

Simulation and Synthesis are components of a design methodology

6© Don Thomas, 1998, 6

Verilog Levels of Abstraction

�Gate modeling (Structural modeling)
� the system is represented in terms of primitive gat es and their

interconections
- NANDs, NORs, …

�Behavioral modeling
� the system is represented by a program-like languag e

DD always
@posedge clock

Q = #5 D

gate-level model behavioral model

Q Q

7© Don Thomas, 1998, 7

7

Representation: Structural Models

�Structural models
� Are built from gate primitives and/or other modules
� They describe the circuit using logic gates — much a s you

would see in an implementation of a circuit.

� Identify:
� Gate instances, wire names, delay from a or b to f.
� This is a multiplexor — it selects one of n inputs (2 here) and

passes it on to the output

module MUX (f, a, b, sel);
output f;
input a, b, sel;

and #5 g1 (f1, a, nsel),
g2 (f2, b, sel);

or #5 g3 (f, f1, f2);
not g4 (nsel, sel);

endmodule

a

b

f

sel

f = a • sel’ + b • sel

a

b

f

sel

nsel

f2

f1

8© Don Thomas, 1998, 8

Representation: Gate-Level Models

�Need to model the gate’s:
� Function
� Delay

� Function
� Generally, HDLs have built-in gate-level primitives

- Verilog has NAND, NOR, AND, OR, XOR, XNOR, BUF, NOT, and
some others

� The gates operate on input values producing an outp ut value
- typical Verilog gate instantiation is:

and #delay instance-name (out, in1, in2, in3, …);

optional “many”

and #5 g1 (f1, a, nsel);

a comma here let’s you
list other instance names
and their port lists.

© Don Thomas, 1998, Page 3

9© Don Thomas, 1998, 9

Four-Valued Logic

�Verilog Logic Values
� The underlying data representation allows for any b it to have one

of four values
� 1, 0, x (unknown), z (high impedance)
� x — one of: 1, 0, z, or in the state of change
� z — the high impedance output of a tri-state gate.

�What basis do these have in reality?
� 0, 1 … no question
� z … A tri-state gate drives either a zero or one on its output. If it’s

not doing that, its output is high impedance (z). Tri-state gates are
real devices and z is a real electrical affect.

� x … not a real value. There is no real gate that drives an x on to a
wire. x is used as a debugging aid. x means the s imulator can’t
determine the answer and so maybe you should worry!

�BTW …
� some simulators keep track of more values than thes e. Verilog will

in some situations.

10© Don Thomas, 1998, 10

Four-Valued Logic

� Logic with multi-level logic values
� Logic with these four values make sense

- NAND anything with a 0, and you get a 1. This incl udes having
an x or z on the other input. That’s the nature of the nand gate

- NAND two x’s and you get an x
� Note: z treated as an x on input. Their rows and c olumns are the

same
� If you forget to connect an input … it will be seen as an z.
� At the start of simulation, everything is an x.

Nand 0 1 x z
0 1 1 1 1
1 1 0 x x
x 1 x x x
z 1 x x x

A 4-valued truth table for a
Nand gate with two inputs

In
pu

t A

Input B A
B

11© Don Thomas, 1998, 11

How to build and test a module

�Construct a “test bench” for your design
� Develop your hierarchical system within a module th at has input and

output ports (called “ design ” here)
� Develop a separate module to generate tests for the module (“ test ”)
� Connect these together within another module (“ testbench ”)

module design (a, b, c);
input a, b;
output c;
…

module test (q, r);
output q, r;

initial begin
//drive the outputs with signals
…

module testbench ();
wire l, m, n;

design d (l, m, n);
test t (l, m);

initial begin
//monitor and display
…

12© Don Thomas, 1998, 12

Another view of this

� 3 chunks of Verilog, one for each of:

Your hardware
called

DESIGN

TESTBENCH is the final piece of hardware which
connect DESIGN with TEST so the inputs generated
go to the thing you want to test...

Another piece of
hardware, called
TEST, to generate
interesting inputs

© Don Thomas, 1998, Page 4

13© Don Thomas, 1998, 13

An Example

Module testAdd generates inputs for module halfAdd an d
displays changes. Module halfAdd is the design

module tBench;
wire su, co, a, b;

halfAdd ad(su, co, a, b);
testAdd tb(a, b, su, co);

endmodule

module halfAdd (sum, cOut, a, b);
output sum, cOut;
input a, b;

xor #2 (sum, a, b);
and #2 (cOut, a, b);

endmodule

module testAdd(a, b, sum, cOut);
input sum, cOut;
output a, b;
reg a, b;

initial begin
$monitor ($time,,

“a=%b, b=%b, sum=%b, cOut=%b”,
a, b, sum, cOut);

a = 0; b = 0;
#10 b = 1;
#10 a = 1;
#10 b = 0;
#10 $finish;

end
endmodule

14© Don Thomas, 1998, 14

module testAdd(a, b, sum, cOut);
input sum, cOut;
output a, b;
reg a, b;

initial begin
$monitor ($time,,

“a=%b, b=%b, sum=%b, cOut=%b”,
a, b, sum, cOut);

a = 0; b = 0;
#10 b = 1;
#10 a = 1;
#10 b = 0;
#10 $finish;

end
endmodule

The test module

� It’s the test generator
� $monitor

� prints its string when executed.
� after that, the string is printed

when one of the listed values
changes.

� only one monitor can be active
at any time

� prints at end of current
simulation time

� Function of this tester
� at time zero, print values and set

a=b=0
� after 10 time units, set b=1
� after another 10, set a=1
� after another 10 set b=0
� then another 10 and finish

15© Don Thomas, 1998, 15

Another Version of a Test Module

�Multi-bit constructs
� test is a two-bit register

and output
� It acts as a two-bit

number (counts 00-01-
10-11-00…)

� Module tBench needs
to connect it correctly
— mod halfAdd has 1-
bit ports.

module testAdd (test, sum, cOut);
input sum, cOut;
output [1:0] test;
reg [1:0] test;

initial begin
$monitor ($time,,

"test=%b, sum=%b, cOut=%b",
test, sum, cOut);

test = 0;
#10 test = test + 1;
#10 test = test + 1;
#10 test = test + 1;
#10 $finish;

end
endmodule

module tBench;
wire su, co;
wire [1:0] t;

halfAdd ad (su, co, t[1], t[0]);
testAdd tb (t, su, co);

endmodule
Connects bit 0 or wire t to this port
(b of the module halfAdder)

16© Don Thomas, 1998, 16

Yet Another Version of testAdd

�Other
procedural
statements
� You can use

“for”, “while”,
“if-then-else”
and others
here.

� This makes it
easier to write if
you have lots of
input bits.

module tBench;
wire su, co;
wire [1:0] t;

halfAdd ad (su, co, t[1], t[0]);
testAdd tb (t, su, co);

endmodule

module testAdd (test, sum, cOut);
input sum, cOut;
output [1:0] test;
reg [1:0] test;

initial begin
$monitor ($time,,

"test=%b, sum=%b, cOut=%b",
test, sum, cOut);

for (test = 0; test < 3; test = test + 1)
#10;

#10 $finish;
end

endmodule

hmm… “<3” … ?

© Don Thomas, 1998, Page 5

17© Don Thomas, 1998, 17

Other things you can do

�More than modeling hardware
� $monitor — give it a list of variables. When one of them changes, it prints

the information. Can only have one of these active at a time.
e.g. …

- $monitor ($time,,, “a=%b, b=%b, sum=%b, cOut=%b”,a, b, sum, cOut);

- The above will print:
2 a=0, b=0, sum=0, cOut=0<return>

� $display() — sort of like printf()
- $display (“Hello, world — %h”, hexvalue)

extra commas
print as spaces

%b is binary (also,
%h, %d and others)

newline
automatically

included

display contents of data item called
“hexvalue” using hex digits (0-9,A-F)

What if what you
print has the
value x or z?

18© Don Thomas, 1998, 18

Structural vs Behavioral Models

�Structural model
� Just specifies primitive gates and wires
� i.e., the structure of a logical netlist
� You basically know how to do this now.

�Behavioral model
� More like a procedure in a programming language
� Still specify a module in Verilog with inputs and o utputs...
� ...but inside the module you write code to tell wh at you want to have

happen, NOT what gates to connect to make it happen
� i.e., you specify the behavior you want, not the st ructure to do it

�Why use behavioral models
� For testbench modules to test structural designs
� For high-level specs to drive logic synthesis tools

19© Don Thomas, 1998, 19

How do behavioral models fit in?
�How do they work with

the event list and
scheduler?
� Initial (and always) begin

executing at time 0 in
arbitrary order

� They execute until they
come to a “#delay”
operator

� They then suspend, putting
themselves in the event list
10 time units in the future
(for the case at the right)

� At 10 time units in the
future, they resume
executing where they left
off.

�Some details omitted
� ...more to come

module testAdd(a, b, sum, cOut);
input sum, cOut;
output a, b;
reg a, b;

initial begin
$monitor ($time,,

“a=%b, b=%b,
sum=%b, cOut=%b”,
a, b, sum, cOut);

a = 0; b = 0;
#10 b = 1;
#10 a = 1;
#10 b = 0;
#10 $finish;

end
endmodule

20© Don Thomas, 1998, 20

Two initial statements?

� Things to note
� Which initial statement starts first?
� What are the values of a, b, and out when

the simulation starts?
� These appear to be executing concurrently

(at the same time). Are they?

…
initial begin

a = 0; b = 0;
#5 b = 1;
#13 a = 1;

end
…
initial begin

out = 1;
#10 out = 0;
#8 out = 1;

end
…

1

0

1

0

1

0
0 10 18

a

b

out

© Don Thomas, 1998, Page 6

21© Don Thomas, 1998, 21

Behavioral Modeling

�Procedural statements are used
� Statements using “initial” and “always” Verilog co nstructs
� Can specify both combinational and sequential circu its

�Normally don’t think of procedural stuff as “logic”
� They look like C: mix of ifs, case statements, ass ignments …
� … but there is a semantic interpretation to put on t hem to allow them

to be used for simulation and synthesis (giving equ ivalent results)

22© Don Thomas, 1998, 22

Behavioral Constructs

�Behavioral descriptions are introduced by initial a nd
always statements

�Points:
� They all execute concurrently
� They contain behavioral statements like if-then-els e, case, loops,

functions, …

initial

always

Starts when
simulation

starts

Execute once
and stop

Continually loop—
while (power on)
do statements;

Not used in
synthesis

Used in
synthesis

Statement Starts How it works Use in Synthesis?Looks like

initial
begin
…
end

always
begin
…
end

23© Don Thomas, 1998, 23

Statements, Registers and Wires

�Registers
� Define storage, can be more than

one bit
� Can only be changed by assigning

value to them on the left-hand side
of a behavioral expression.

�Wires (actually “nets”)
� Electrically connect things

together
� Can be used on the right-hand

side of an expression
- Thus we can tie primitive

gates and behavioral blocks
together!

�Statements
� left-hand side = right-hand side
� left-hand side must be a register
� Four-valued logic

module silly (q, r);
reg [3:0] a, b;
wire [3:0] q, r;

always begin
…
a = (b & r) | q;
…
q = b;
…

end
endmodule

Can’t do — why?

Logic with
registers
and wires

Multi-bit
registers
and wires

24© Don Thomas, 1998, 24

Behavioral Statements
� if-then-else

� What you would expect, except that it’s
doing 4-valued logic. 1 is interpreted as
True; 0, x, and z are interpreted as False

� case
� What you would expect, except that it’s

doing 4-valued logic
� If “selector” is 2 bits, there are 4 2 possible

case-items to select between
� There is no break statement — it is

assumed.

� Funny constants?
� Verilog allows for sized, 4-valued

constants
� The first number is the number of bits, the

letter is the base of the following number
that will be converted into the bits.

8’b00x0zx10

if (select == 1)
f = in1;

else f = in0;

case (selector)
2’b00: a = b + c;
2’b01: q = r + s;
2’bx1: r = 5;
default: r = 0;

endcase

assume f, a, q, and r
are registers for this
slide

© Don Thomas, 1998, Page 7

25© Don Thomas, 1998, 25

Behavioral Statements

� Loops
� There are restrictions on using these for synthesis — don’t.
� They are mentioned here for use in test modules

� Two main ones — for and while
� Just like in C
� There is also repeat and forever

reg [3:0] testOutput, i;
…
for (i = 0; i <= 15; i = i + 1) begin

testOutput = i;
#20;

end

reg [3:0] testOutput, i;
…
i = 0;
while (i <= 15)) begin

testOutput = i;
#20 i = i + 1;

end

Important: Loops must have a delay operator (or as we’ll see
later, an @ or wait(FALSE)). Otherwise, the simula tor never stops
executing them.

26© Don Thomas, 1998, 26

Test Module, continued
�Bit Selects and Part Selects

� This expression extracts bits or ranges of bits or a wire or register

module testgen (i[3], i[2], i[1], i[0]);
reg [3:0] i; output i;
always

for (i = 0; i <= 15; i = i + 1)
#20;

endmodule

module top;
wire w0, w1, w2, w3;

testgen t (w0, w1, w2, w3);
design d (w0, w1, w2, w3);
end

module design (a, b, c, d);
input a, b, c, d;

mumble, mumble, blah, blah;
end

The individual bits of register i
are made available on the ports.
These are later connected to
individual input wires in module
design.

A
lte

rn
at

e:

module testgen (i);
reg [3:0] i; output i;
always

for (i = 0; i <= 15; i = i + 1)
#20;

endmodule

module top;
wire [3:0] w;

testgen t (w);
design d (w[0], w[1], w[2], w[3]);
end

27© Don Thomas, 1998, 27

Concurrent Constructs
�We already saw #delay
�Others

� @ … Waiting for a change in a value — used in synthesis
- @ (var) w = 4;
- This says wait for var to change from its current va lue. When it

does, resume execution of the statement by setting w = 4.
� Wait … Waiting for a value to be a certain level — not use d in

synthesis
- wait (f == 0) q = 3;
- This says that if f is equal to zero, then continue executing and

set q = 3.
- But if f is not equal to zero, then suspend executi on until it does.

When it does, this statement resumes by setting q = 3.

�Why are these concurrent?
� Because the event being waited for can only occur a s a result of the

concurrent execution of some other always/initial b lock or gate.
� They’re happening concurrently

28© Don Thomas, 1998, 28

FAQs: behavioral model execution
�How does an always or initial statement start

� That just happens at the start of simulation — arbit rary order

�Once executing, what stops it?
� Executing either a #delay, @event, or wait(FALSE).
� All always blocks need to have at least one of thes e. Otherwise, the

simulator will never stop running the model -- (it’s an infinite loop!)

�How long will it stay stopped?
� Until the condition that stopped it has been resolv ed

- #delay … until the delay time has been reached
- @(var) … until var changes
- wait(var) … until var becomes TRUE

�Does time pass when a behavioral model is executing ?
� No. The statements (if, case, etc) execute in zero time.
� Time passes when the model stops for #, @, or wait.

�Will an always stop looping?
� No. But an initial will only execute once.

© Don Thomas, 1998, Page 8

29© Don Thomas, 1998, 29

Using a case statement

� Truth table method
� List each input combination
� Assign to output(s) in each

case item.

�Concatenation
� {a, b, c} concatenates a, b,

and c together, considering
them as a single item

� Example
a = 4’b0111
b = 6’b 1x0001
c = 2’bzx

then {a, b, c} =
12’b01111x0001zx

module fred (f, a, b, c);
output f;
input a, b, c;
reg f;

always @ (a or b or c)
case ({a, b, c})

3’b000: f = 1’b0;
3’b001: f = 1’b1;
3’b010: f = 1’b1;
3’b011: f = 1’b1;
3’b100: f = 1’b1;
3’b101: f = 1’b0;
3’b110: f = 1’b0;
3’b111: f = 1’b1;

endcase
endmodule

Check the rules …
30© Don Thomas, 1998, 30

How about a Case Statement Ex?

�Here’s another version ...
module fred (f, a, b, c);

output f;
input a, b, c;
reg f;

always @ (a or b or c)
case ({a, b, c})

3’b000: f = 1’b0;
3’b001: f = 1’b1;
3’b010: f = 1’b1;
3’b011: f = 1’b1;
3’b100: f = 1’b1;
3’b101: f = 1’b0;
3’b110: f = 1’b0;
3’b111: f = 1’b1;

endcase
endmodule

module fred (f, a, b, c);
output f;
input a, b, c;
reg f;

always @ (a or b or c)
case ({a, b, c})

3’b000: f = 1’b0;
3’b101: f = 1’b0;
3’b110: f = 1’b0;
default: f = 1’b1;

endcase
endmodule

check the rules…

Important: every control path is specified

Could put
a

function
here too

31© Don Thomas, 1998, 31

Two inputs, Three outputs
reg [1:0] newJ;
reg out;
input i, j;
always @(i or j)

case (j)
2’b00: begin

newJ = (i == 0) ? 2’b00 : 2’b01;
out = 0;

end
2’b01 : begin

newJ = (i == 0) ? 2’b10 : 2’b01;
out = 1;

end
2’b10 : begin

newJ = 2’b00;
out = 0;

end
default: begin

newJ = 2’b00;
out = 1'bx;

end
endcase

Works like the C
conditional operator.

(expr) ? a : b;

If the expr is true,
then the resulting
value is a, else it’s b.

Works like the C
conditional operator.

(expr) ? a : b;

If the expr is true,
then the resulting
value is a, else it’s b.

32© Don Thomas, 1998, 32

Behavioral Timing Model (Not fully detailed here)

�How does the behavioral model advance time?
� # — delaying a specific amount of time
� @ — delaying until an event occurs (“posedge”, “negedg e”, or any

change)
- this is edge-sensitive behavior

� wait — delaying until an event occurs (“wait (f == 0)”)
- this is level sensitive behavior

�What is a behavioral model sensitive to?
� any change on any input? — No
� any event that follows, say, a “posedge” keyword

- e.g. @posedge clock
- Actually “ no” here too. — not always

© Don Thomas, 1998, Page 9

33© Don Thomas, 1998, 33

What are behavioral models sensitive to?

�Quick example
� Gate A changes its output, gates B and C are evalua ted to see if their

outputs will change, if so, their fanouts are also followed…
� The behavioral model will only execute if it was wa iting for a change

on the A input

Behavioral
model

A

B

C

A

always @(A)
begin

B = ~A;
end

always @(posedge clock)
Q <= A;

This would execute

This wouldn’t

…

34© Don Thomas, 1998, 34

Order of Execution

� In what order do these models execute?
� Assume A changes. Is B, C, or the behavioral model executed first?

- Answer: the order is defined to be arbitrary
� All events that are to occur at a certain time will execute in an

arbitrary order.
� The simulator will try to make them look like they all occur at the

same time — but we know better.

Behavioral
model

A

B

C

A

always @(A)
begin

yadda yadda
end

35© Don Thomas, 1998, 35

Arbitrary Order? Oops!

�Sometimes you need to
exert some control
� Consider the

interconnections of this D-
FF

� At the positive edge of c,
what models are ready to
execute?

� Which one is done first?

module dff(q, d, c);
…
always @(posedge c)

q = d;
endmodule

module sreg (…);
…
dff a (q0, shiftin, clock),

b (q1, q0, clock),
c (shiftout, q1, clock);

endmodule

QDQD QD

clock

shiftin shiftoutOops — The order of
execution can matter!

film at 11

36© Don Thomas, 1998, 36

Behavioral Timing Model

�How does the behavioral model advance time?
� # — delaying a specific amount of time

� @ — delaying until an event occurs — e.g. @v
- “posedge”, “negedge”, or any change
- this is edge-sensitive behavior
- When the statement is encountered, the value v is s ampled.

When v changes in the specified way, execution cont inues.

� wait — delaying until an event occurs (“wait (f == 0)”)
- this is level sensitive behavior

� While one model is waiting for one of the above rea sons, other
models execute — time marches on

© Don Thomas, 1998, Page 10

37© Don Thomas, 1998, 37

Wait

�Wait — waits for a level on a line
� How is this different from an “@” ?

�Semantics
� wait (expression) statement;

- e.g. wait (a == 35) q = q + 4;
� if the expression is FALSE, the process is stopped

- when a becomes 35, it resumes with q = q + 4
� if the expression is TRUE, the process is not stopped

- it continues executing

�Partial comparison to @ and #
� @ and # always “block” the process from continuing
� wait blocks only if the condition is FALSE

38© Don Thomas, 1998, 38

An example of wait

module handshake (ready, dataOut, …)
input ready;
output [7:0] dataOut;
reg [7:0] someValueWeCalculated;

always begin
wait (ready);
dataOut = someValueWeCalculated;
…
wait (~ready)
…

end
endmodule

module handshake (ready, dataOut, …)
input ready;
output [7:0] dataOut;
reg [7:0] someValueWeCalculated;

always begin
wait (ready);
dataOut = someValueWeCalculated;
…
wait (~ready)
…

end
endmodule

ready

Do you always get the value right when ready goes
from 0 to 1? Isn’t this edge behavior?

39© Don Thomas, 1998, 39

Wait vs. While

�Are these equivalent?
� No: The left example is correct, the right one isn’ t — it won’t work
� Wait is used to wait for an expression to become TRUE

- the expression eventually becomes TRUE because a va riable in
the expression is changed by another process

� While is used in the normal programming sense
- in the case shown, if the expression is TRUE, the s imulator will

continuously execute the loop. Another process wil l never have
the chance to change “in”. Infinite loop!

- while can’t be used to wait for a change on an inpu t to the
process. Need other variable in loop, or # or @ in loop.

module yes (in, …);
input in;
…

wait (in == 1);
…

endmodule

module no (in, …);
input in;
…

while (in != 1);
…

endmodule

40© Don Thomas, 1998, 40

Blocking procedural assignments and #

�We’ve seen blocking assignments — they use =
� Options for specifying delay

#10 a = b + c;
a = #10 b + c;

� The differences:

Note the action of the second one:
- an intra-assignment time delay
- execution of the always statement is blocked (suspe nded) in the

middle of the assignment for 10 time units.
- how is this done?

The difference?

© Don Thomas, 1998, Page 11

41© Don Thomas, 1998, 41

Events — @something

�Action
� when first encountered, sample the expression
� wait for expression to change in the indicated fash ion

� This always blocks

�Examples

always @(posedge ck)
q <= d;

always @(hello)
a = b;

always @(hello or goodbye)
a = b;

always begin
yadda = yadda;
@(posedge hello or negedge goodbye)
a = b;
…

end

