Uniform and Normal Distribution

1. UNIFORM OR RECTANGULAR DISTRIBUTION

Let a and 8 be two real numbers such that —oco < a < § < 0co. A continuous random
variable X is said to have a uniform (or rectangular) distribution over the interval (o, /3)
(written as X ~ U(«, 3)) if probability density function of X is given by
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Now, the r-th moment of X ~ U(q, () is
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The m.g.f. of X ~ U(a, ) is
Mx(t) = E(e')
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The d.f. of X ~ U(a, f) is

FX(:L'):/fX(t)dt

0, ifr<a
= 2:3, ifa<z<p
1, if x > f.
Remark 1. Let X ~ U(a, ) and Y = % Then the d.f. of Y is
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Clearly, Fy is not differentiable at 0 and 1. Hence, the p.d.f. of Y s
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0, otherwise.
Therefore, Y ~ U(0,1).

Example 2. Let a > 0 be a real constant. A point X is chosen at random on the interval

(0,a) (i.e., X ~U(0,a)).

(1) If Y denotes the area of equilateral triangle having sides of length X, find the

mean and variance of Y.
(2) If the point X divides the interval (0,a) into subintervals [; = (0, X) and I, =

[X, a), find the probability that the larger of these two subintervals is at least the
double of the size of the smaller subinterval.

Solution:

(1) We have Y = ¥2X?. Then

Eav:%gmx%_%gf;
EW%z%E@ﬂ:%f,
wmw:Eww4mmV:%.



(2) The required probability is
p=P{max(X,a — X) > 2min(X,a — X)})
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_ P(X < %}) +PU{X > 2ga})

a 2a

= Fy(= 1— Fx(—
1 2 2
3 3 3

2. NORMAL OR (GAUSSIAN DISTRIBUTION

(1) Let u € R and o > 0 be real constants. A continuous random variable X is said
to have a normal (or Gaussian) distribution with parameters 1 and 2 (written as
X ~ N(u,o0?)) if probability density function of X is given by

1 (z—p)?
fx(x) = e 20t , —00 < x < Q.
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(2) The N(0,1) distribution is called the standard normal distribution. The p.d.f.
and the d.f. of N(0, 1) distributions will be denoted by ¢ and ® respectively, i.e.,
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o(z) = e 2, —00< z< o0
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(3) We know that [ e *dx = /7 and [ e~ 7 dz = /27

Clearly if X ~ N(u,0?), then
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fx(p—x) = fx(p+z) = e

Thus, the distribution of X is symmetric about u. Hence,
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X ~N(pu,0%) = Fx(u—2)+ Fx(p+2) =1, Vo €R and FX(,LL)Zi.

In particular,
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Suppose that X ~ N(u,0?). Then the p.d.f. of Z = £ is given by
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Now, the m.g.f. of X ~ N(u,oc?) is
Mx(t) = E(e")

= / e fx (z)dx
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Therefore,

E(X?) = MP(0) = pi* + 0%
and Var(X) = BE(X?) — (E(X))* = o*.



