Random Vector

Let (S, Σ, P) be a probability space. A (univariate) random variable describes a numerical quantities of a typical outcome of a random experiment. In many experiments an observation is expressed as a family of several separate numerical quantiles and we may be interested in simultaneously studying all of then together. Consider the following example.

Example 1. Two distinguishable dice (labelled as D_1 and D_2) are thrown simultaneously. The sample space is $S = \{(i, j) : i, j \in \{1, 2, ..., 6\}\}$. For $(i, j) \in S$ define

 $X_1((i,j)) = i + j = sum of number of dots on uppermost faces of two dice$

and

 $X_1((i,j)) = |i+j| =$ absolute difference of number of dots on uppermost faces of two dice.

It may be of interest to study numerical characteristics X_1 and X_2 simultaneously. These considerations lead to the study of the function $\underline{X} = (X_1, X_2) : \mathcal{S} \to \mathbb{R}$

Notations.

• We denote by \mathbb{R}^n the *n*-dimensional Euclidean space, i.e.,

$$\mathbb{R}^{n} = \{ \underline{x} = (x_{1}, x_{2}, \dots, x_{n}) : x_{i} \in \mathbb{R}, \ i = 1, 2, \dots, n \}.$$

• For i = 1, 2, ..., n, let $X_i : \mathcal{S} \to \mathbb{R}$ be any functions. Then the function $\underline{X} = (X_1, X_2, ..., X_n) : \mathcal{S} \to \mathbb{R}^n$ is defined as

$$\underline{X}(w) = (X_1(w), X_2(w), \dots, X_n(w)), \ w \in \mathcal{S}.$$

• For $A \subseteq \mathbb{R}^n$,

$$\underline{X}^{-1}(A) = \{ w \in \mathcal{S} : \underline{X}(w) \in A \}.$$

• For $\underline{x} = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n$, we denote by $(-\underline{\infty}, \underline{x}]$ the *n*-dimensional interval $(-\underline{\infty}, \underline{x}] = (-\infty, x_1] \times (-\infty, x_2] \times \dots \times (-\infty, x_n].$

Definition 2. A function $\underline{X} : \mathcal{S} \longrightarrow \mathbb{R}^n$ is called a random vector (RV) if $\underline{X}^{-1}((-\underline{\infty}, \underline{x}]) \in \Sigma$, for all $\underline{x} \in \mathbb{R}^n$. That is, $\{w \in \mathcal{S} : X_1(w) \le x_1, X_2(w) \le x_2, \dots, X_n(w) \le x_n\} \in \Sigma$.

Example 3. Let $A, B \subseteq S$. Define $\underline{X} = (X_1, X_2) : S \to \mathbb{R}^2$ by

$$X_1(w) = I_A(w) = \begin{cases} 1, & \text{if } w \in A, \\ 0, & \text{if } w \notin A; \end{cases}$$

and

$$X_2(w) = I_B(w) = \begin{cases} 1, & \text{if } w \in B, \\ 0, & \text{if } w \notin B. \end{cases}$$

Then \underline{X} is an RV if and only if A and B are events. (Prove!)

Theorem 4. Let $\underline{X} = (X_1, X_2, \dots, X_n) : \mathcal{S} \to \mathbb{R}^n$ be a given function. Then \underline{X} is a random vector if and only if X_1, X_2, \dots, X_n are random variables.

Proof. Exercise.

Remark 5. If S is finite or countable and $\Sigma = \mathcal{P}(\Sigma)$, then any function $\underline{X} = (X_1, X_2, \dots, X_n)$: $S \to \mathbb{R}^n$ is a random vector.

Joint Cumulative Distribution Function

Definition 6. Let $\underline{X} = (X_1, X_2, \dots, X_n) : \mathcal{S} \to \mathbb{R}^n$ be a random vector. The function $F_{\underline{X}} : \mathbb{R}^n \to \mathbb{R}$, defined by,

$$F_{\underline{X}}(x_1, x_2, \dots, x_n) = P(\{w \in \mathcal{S} : X_1(w) \le x_1, X_2(w) \le x_2, \dots, X_n(w) \le x_n\}), \ \forall \ \underline{x} \in \mathbb{R}^n,$$

is called the joint cumulative distribution function (joint c.d.f) or the joint distribution function (d.f) of the random vector \underline{X} .

The joint distribution function of any subset of random variables X_1, X_2, \ldots, X_n is called a marginal distribution function of F_X .

- **Remark 7.** (1) As in the case of random variables, the set $\{w \in S : X_1(w) \leq x_1, X_2(w) \leq x_2, \ldots, X_n(w) \leq x_n\}$ will be denoted by $\{X_1 \leq x_1, X_2 \leq x_2, \ldots, X_n \leq x_n\}$.
 - (2) In this course, we will mainly study 2- (and sometimes 3-) dimensional random vectors.
 - (3) Let $\underline{X} = (X, Y) : \mathcal{S} \to \mathbb{R}^2$ be a random vector. The joint c.d.f. is a map $F_{\underline{X}} : \mathbb{R}^n \to \mathbb{R}$, defined by,

$$F_{\underline{X}}(x,y) = P(\{X \le x, Y \le y\}).$$

(4) The c.d.f. of X and Y are called a marginal c.d.f. of F_X .

Proposition 8. Let $\underline{X} = (X, Y) : \mathcal{S} \to \mathbb{R}^2$ be a random vector with joint c.d.f. $F_{\underline{X}}$. Then the marginal c.d.f. of X and Y are given by

$$F_X(x) = \lim_{y \to \infty} F_{\underline{X}}(x, y) \text{ and } F_Y(y) = \lim_{x \to \infty} F_{\underline{X}}(x, y)$$

Remark 9. Let $(a_1, b_1), (a_2, b_2) \in \mathbb{R}^2$. Then we know that

$$P(a < X \le b) = P(X \le b) - P(X \le a) = F_X(b) - F_X(a)$$

Now,

$$P(a_1 < X \le b_1, a_2 < Y \le b_2)$$

= $P(a_1 < X \le b_1, Y \le b_2) - P(a_1 < X \le b_1, Y \le a_2)$
= $[P(X \le b_1, Y \le b_2) - P(X \le a_1, Y \le b_2)]$
 $- [P(X \le b_1, Y \le a_2) - P(X \le a_1, Y \le a_2)]$
= $F_X(b_1, b_2) - F_X(a_1, b_2) - F_X(b_1, a_2) + F_X(a_1, a_2).$

Theorem 10. Let $F_{\underline{X}}$ be the joint cumulative distribution function of a random vector $\underline{X} = (X, Y)$. Then

- (1) $\lim_{\substack{x \to \infty \\ y \to \infty}} F_{\underline{X}}(x, y) = 1.$
- (2) $\lim_{y\to\infty} F_X(x,y) = 0$ and $\lim_{x\to\infty} F_X(x,y) = 0$.
- (3) $F_{\underline{X}}(x, y)$ is right continuous and nondecreasing in each argument (keeping other argument fixed).
- (4) For each $(a_1, b_1] \times (a_2, b_2]$ in \mathbb{R}^2 ,

$$\Delta = F_{\underline{X}}(b_1, b_2) - F_{\underline{X}}(a_1, b_2) - F_{\underline{X}}(b_1, a_2) + F_{\underline{X}}(a_1, a_2) \ge 0.$$

Theorem 11. Let $G : \mathbb{R}^2 \to \mathbb{R}$ be a function which satisfies properties (1) - (4) of Theorem 10. Then there exists a probability space (S, Σ, P) and a random vector $\underline{X} = (X_1, X_2, \ldots, X_n)$ defined on (S, Σ, P) such that G is the distribution function of \underline{X} . **Example 12.** Let $G : \mathbb{R}^2 \to \mathbb{R}$ be defined by

$$G(x,y) = \begin{cases} x, if \ 0 \le x < 1, \ y \ge 1, \\ y^2, if \ x \ge 1, \ 0 \le y < 1, \\ 1, if \ x \ge 1, \ x \ge 1, \\ 0, otherwise. \end{cases}$$

Sow that G is not a distribution function of any random vector (X, Y).

Solution. Clearly G satisfies properties (1) - (3) of Theorem 10.

For
$$(a_1, b_1] \times (a_2, b_2]$$
, where $a_1, a_2 \in [0, 1)$, $b_1, b_2 \in [1, \infty)$ and $a_1 + a_2^2 > 1$. Then
 $G(b_1, b_2) - G(a_1, b_2) - G(b_1, a_2) + G(a_1, a_2) = 1 - a_1 - a_2^2 + 0 < 0$.

Thus, G is not a joint c.d.f. of any random vector.

Example 13. Consider the function $G : \mathbb{R}^2 \to \mathbb{R}$ defined by

$$G(x,y) = \begin{cases} xy^2, \text{if } 0 \le x < 1, \ 0 \le y < 1, \\ x, \text{if } 0 \le x < 1, \ y \ge 1, \\ y^2, \text{if } x \ge 1, \ 0 \le y < 1, \\ 1, \text{if } x \ge 1, \ y \ge 1, \\ 0, \text{ otherwise.} \end{cases}$$

- (1) Show that G is a joint c.d.f. of some random vector (X, Y).
- (2) Find the marginal c.d.f. of X and Y.

Solution. Clearly $\lim_{\substack{x\to\infty\\y\to\infty}} G(x,y) = 1$. For fixed $x \in \mathbb{R}$, $\lim_{y\to-\infty} G(x,y) = 0$ and for fixed $y \in \mathbb{R}$, $\lim_{x\to-\infty} F_{\underline{X}}(x,y) = 0$.

We note that if y < 0, then G(x, y) = 0 for all $x \in \mathbb{R}$. Moreover,

$$G(x,y) = \begin{cases} 0, \text{if } x < 0, \\ xy^2, \text{if } 0 \le x < 1, \ 0 \le y < 1, \\ y^2, \text{if } x \ge 1, \end{cases}$$

and

$$G(x,y) = \begin{cases} 0, \text{if } x < 0, \\ x, \text{if } 0 \le x < 1, \ y \ge 1, \\ 1, \text{if } x \ge 1. \end{cases}$$

One can see that for $y \in \mathbb{R}$, G(x, y) is a continuous (and hence right continuous) function of x. Similarly, for each $x \in \mathbb{R}$, G(x, y) is a continuous function of y

Furthermore, G(x, y) is nondecreasing in each argument keeping other argument fixed.

For $(a_1, b_1] \times (a_2, b_2]$, we need to show that $\Delta = G(b_1, b_2) - G(a_1, b_2) - G(b_1, a_2) + G(a_1, a_2) \ge 0$. We consider the following cases.

(1) $a_1 < 0$. Then $\Delta = G(b_1, b_2) - G(b_1, a_2) \ge 0$ as G is nondecreasing. (2) $a_2 < 0$. (3) $0 \le a_1 < 1, \ 0 \le a_2 < 1, \ 0 \le b_1 < 1, \ 0 \le b_2 < 1$. (4) $0 \le a_1 < 1, \ 0 \le a_2 < 1, \ 0 \le b_1 < 1, \ b_2 \ge 1$. (5) $0 \le a_1 < 1, \ 0 \le a_2 < 1, \ b_1 \ge 1, \ 0 \le b_2 < 1$. (6) $0 \le a_1 < 1, \ 0 \le a_2 < 1, \ b_1 \ge 1, \ b_2 \ge 1$. $\begin{array}{ll} (7) & 0 \leq a_1 < 1, \, a_2 \geq 1, \, 0 \leq b_1 < 1, \, b_2 \geq 1. \\ (8) & 0 \leq a_1 < 1, \, a_2 \geq 1, \, b_1 \geq 1, \, b_2 \geq 1. \\ (9) & a_1 \geq 1, \, 0 \leq a_2 < 1, \, b_1 \geq 1, \, 0 \leq b_2 < 1. \\ (10) & a_1 \geq 1, \, 0 \leq a_2 < 1, \, b_1 \geq 1, \, b_2 \geq 1. \\ (11) & a_1 \geq 1, \, a_2 \geq 1, \, b_1 \geq 1, \, b_2 \geq 1. \end{array}$

In all these cases verify that $\Delta \geq 0$.

Therefore, G(x, y) is a distribution function of some random vector (X, Y). The marginal c.d.f. of X and Y are respectively

$$F_X(x) = \lim_{y \to \infty} G(x, y) = \begin{cases} 0, \text{ if } x < 0, \\ x, \text{ if } 0 \le x < 1, \\ 1, \text{ if } x \ge 1, \end{cases}$$

and

$$F_Y(y) = \lim_{x \to \infty} G(x, y) = \begin{cases} 0, \text{ if } y < 0, \\ y^2, \text{ if } 0 \le y < 1, \\ 1, \text{ if } y \ge 1. \end{cases}$$