Moments, Covariance and Correlation Coefficient

Let X = (X1, X9,...,X,) be a n—dimensional (n > 2) random vector and ¢ : R" — R be a
function such that ¢~1(A) € Bgn, for all A € Bg. Suppose E()(X)) is finite.

(1) If X is of discrete type with joint p.m.f. fx and support Ex, then
E()(X)) = > V(1 22, .., 20)) fx (21,72, ..., Tn).
(z1,%2,....2n)EEX

(2) If X is of continuous type with joint p.d.f. fx, then

:/.../¢(:C17:L‘27...,.’En)fx(l‘l,l‘g,...,CL‘n)dl‘ldl‘Q"'den.

(3) For nonnegative integers ki, ko, ..., kp, let ¥(x1,xo, ..., x,) = m’flxgz -..zFn. Then

/“"21,162,..-,1671 = E(@/)(X)) = E(Xleéw T Xﬁn)v

provided it is finite, is called the joint moment of order ky + ko + --- + k, of X =
(X1, Xo,..., Xp).
(4) For n =2, let ¥(x1,22) = (x1 — E(X1))(x2 — E(X2)). Then

CO'U(Xl,XQ) = E((X1 — E(Xl))(XQ — E(Xg))),
provided it is finite, is called the covariance between X; and Xo.

Note: By the definition of covariance, it is easy to see
Cov(X1,X1) = Var(Xy);
Cov(X1, X2) = Cov(Xa, X1);
Cov(X1,X2) = E(X1X2) — E(X1)E(X2).

Theorem 1. Let X = (X1, Xs) and Y = (Y1,Y2) be two random vectors and ay,az,by,be be real
constants. Then, provided the involved expectations are finite,

(1) E(a1X1 + (IQXQ) = alE(Xl) + CLQE(XQ)
( ) Cov(a1X1+a2X2,b1Y1+b2Y2) = ai1b; COU(Xl,Yi)+a1b2 COU(Xl,Y2)+6L2b1 CO’U(XQ,H)-}-

azby Cov(Xs,Ys) = Z Z a;bjCov(X;,Yj).
i=1j4=
In particular,
Var(a; X1 + azXs) = Cov(a1 X1 + a2X2,a1 X1 + a2 X2) = a?Var(Xy) + a2Var(Xs) +
2a1a2C0v( X1, X3).

Proof. (1) Suppose X is continuous type with joint p.d.f. fx. Let ¢ (z1,x2) = a121 + agxs.
Then

E(a1X1 + a2X2) = E(w(z

[ee] o0
/ / arry + azr2) fx (21, v2) dr1 dxo
—00 —0O0

= a1 / / :Ulfé(l‘l, ."L‘Q) dl’l dl’z + ao / / l’gf&(l‘l, :L‘Q) dl’l daTQ

—00 —00 —00 —00

By taking ¥ (21, x2) = x1 and ¥9(x1, x2) = x2, we have

E(Xp) = / /$1fx x1,x2) dr dro

—00 —00



and

E(X5) = E(ts(X)) = / / vofx (w1, 2) oy das.

—00 —00
Thus,
E(a1 X1+ agXo) = a1 E(X1) + aaE(X2).

Similarly, we can prove for discrete type random vector.

(2)

Cov(a1 X1 + a2 X2, b1Y1 + b2Y3)

2 2
= C’ov(z a; X, Z b;Y;)
i=1 j=1

2 2 2 2
- E(( Y oaiXi—E(YaiXi)) (D bY; —EQY ijj))>
i=1 i=1 Jj=1 j=1
2

2
E((Zaxxi —B)) (Db (Y - E(Y»))) (by (1)
=1

Jj=1

p(3 (- B - B

i=1 j=1

SR

i=1 j=1

2 2
= Z Z a;bjCov(X;,Y)).

i=1 j=1

Remark 2. In general, we have

(1) E(m X1+ aeXo+ -+ anXy) = a1 E(X1) + a2B(X2) + - + an E(Xy);

ni n2 n1 n2
(2) Cov(} aiXy, 37 b5Y;) = 32 30 aibjCov(Xy,Yj).
i=1 =1 i=1j=1

In particular,

ni ni
Var(y aiX;) = > a;Var(Xi) + 23231 <icj<p, Cov(Xi, Xj)
i=1 i=1 ==

Theorem 3. Let X1, Xo,...,X,, be the independent random variables. Let 1; : R — R be a
function such that wi_l(A) € Bg, for all A € Bg, fori=1,2,--- ,n. Then

n

E<Zf[1¢i<xi>) =ZHIE(¢Z-<X@->>,

provided the involved expectations are finite.

Proof. We will prove the theorem for n = 2 and continuous random vector. Suppose X =

(X1,X2) is a continuous type random vector with joint p.d.f. fx. Consider the function
2



Y(x1,x2) = ¥1(x1)1h2(z2). Then
E(¢1(X1)2(X2)) = E(¥(X))

[e.o]

]

/¢1($1)¢2($2)fx($17$2)dl’ldm

= / / P1(x1)a(x2) fx, (21) fx, (x2) dry dza (since X7 and Xo are independent)
= < / Y1(71) fx, (21) dwl) < / Va2(72) fx,(22) dlEz)
= E(1(X1))E(¥2(X2))
O
Corollary 4. Let X1, Xs,..., X, be the independent random variables. Then
COU(XZ‘,X]‘) = O, Vi 75]
and for real constants a1, ao, ..., an,
Var(z a; X;) = Z a;Var(X;),
i=1 i=1
provided the involved expectations are finite.
Proof. Fix i,5 € {1,2,...,n},i # j. Then by Theorem 3, we have
E(XiX;) = E(X;)E(X;)
Since Cov(X;, X;) =0, Vi # j, by Remark 2,
Var(z a; X;) = Z a;Var(X;).
i=1 i=1
O
Definition 5. (1) The correlation coefficient between random variables X and 'Y is defined
by
Cov(X,Y
p(X, Y) = ( ) ’
VVar(X)Var(Y)

provided 0 < Var(X),Var(Y) < co.
(2) The random variables X and'Y are said to be uncorrelated if Cov(X,Y) = 0.

Note: By definition, it is clear that if X and Y are independent random variables, then they
are uncorrelated but converse need not be true.

Theorem 6. Let X and Y be two random wvariables. Then, provided the involved expectations
are finite,

(1) (B(XY))? < E(X*)E(Y?). Moreover, (E(XY))? = E(X?)E(Y?) if and only if P(Y =
cX)=1or P(X =cY) =1, for some c € R.
This inequality is know as Cauchy-Schwarz inequality for random variables.
(2) [p(X,Y)| < 1. To prove it, apply (1) on random variables X' = X — E(X) and Y/ =
Y —E®Y).
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Example 7. Let Z = (X,Y) be a random vector of discrete type with joint p.m.f.

p1, if (z,y) = (-1,1)
p2, if (x,y) = (0,0)
p1, if (x,y) = (1,1)
0, otherwise

flz,y) =

where p1,p2 € (0,1) and 2p; + pa = 1.
Then the support of Z, X and Y are

EZ = {(_17 1)7 (070)7 (L 1)}
Ex ={-1,0,1}
and

EY - {07 1}7

respectively. Clearly Ez # Ex x Ey. So, X andY are not independent.

Now,
E(XY)= > ayf(zsy) =0
(zy)eEy
E(X)= > af(z,y)=0;
(zy)ebz
EY)= > yf(zy) =2p;
(zy)eEg

= Cow(X,)Y)=EXY)-EX)EY)=0=p(X,Y)=0
This shows that X and Y are uncorrelated but not independent.
We can also show that X and Y are not independent by another way.
The marginal p.m.f. of X is
> f(@y), if v € {-1,0,1}

0, otherwise

p1, ife=—1
_ P2, Zf:p:(]
), ifr=1

0, otherwise
Similarly, the marginal p.m.f. of Y is

> flzy), ifye{0,1}
0, otherwise
po, if =0
=9q2p1, fz=1

0, otherwise
Since f(—1,1) # fx(=1)fy(1), X and Y are not independent.

Example 8. Let Z = (X,Y) be a random vector of continuous type with joint p.d.f.

o) Lifo<|y <z <1
$7 = .
Y 0, otherwise
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Now,

E(XY) = 7 /Oozcyf(a:,y)da;dy:/ljmydydaij;

—00 —00 0 —x
B(X) = 70 7mf(x,y)dxdy:jjxdydx: g;
—00 —00 0 —x
E(Y)= 7 7yf(w,y)dwdy=j]ydydw=0;

—00 —0O0

0
= Cov(X,Y) = E(XY) - E(X)E(Y)=0= p(X,Y) =

Thus X and Y are uncorrelated.

The marginal p.d.f. of X is

nmzjfmw@

xT

[ dy, ifo<z<1

—T

0, otherwise

2z, if0<z <1
B 0, otherwise
Stmilarly, the marginal p.d.f. of Y is

ﬁ@—/fmmm
1

[dz, if —1<y<1
ly|
0, otherwise

_{1—y|, if —l<y<l1

0, otherwise

Since f(z,y) # fx(x)fy(y), X andY are not independent.

We can also show that X and Y are not independent by another way
Z,X andY are

Ey = (-1,1),
respectively. Clearly Ez # Ex x Ey. So, X andY are not independent.

. The

This example also shows that X and Y are uncorrelated but not independent.

n the support of



