
Lecture 6

Vector Space and Its Properties

Definition 1. Let F be a field with binary operations + (addition) and · (multiplication). A non empty

set V is called a vector space over the field F if there exist two operations, called vector addition ⊕ and

scalar multiplication �,

⊕ : V × V −→ V and � : F× V −→ V,

such that the following conditions are satisfied.

1. Vector addition is associative, i.e., v1 ⊕ (v2 ⊕ v3) = (v1 ⊕ v2)⊕ v3 for all v1, v2, v3 ∈ V ;

2. There is a unique vector 0 ∈ V , called the zero vector, such that v ⊕ 0 = v = 0⊕ v for all v ∈ V ;

3. For each vector v ∈ V there is a unique vector −v ∈ V such that v ⊕ (−v) = 0;

4. Vector addition is commutative, i.e., v1 ⊕ v2 = v2 ⊕ v1 for all v1, v2 ∈ V ;

5. α� (v1 ⊕ v2) = α� v1 ⊕ α� v2 for all v1, v2 ∈ V and α ∈ F;

6. (α + β)� v = α� v ⊕ β � v for all v ∈ V and α, β ∈ F;

7. (α · β)� v = α� (β � v) for all v ∈ V and α, β ∈ F;

8. 1� v = v, where 1 is the multiplicative identity of the field F.

If V is a vector space over the field F, we denote it by V (F). The elements of V are called vectors

and elements of F are called scalars.

Example 2. 1. R(R), C(C) and C(R) are vector spaces under their usual addition and scalar multipli-

cation.

2. Let V = Fn = {(x1, . . . , xn) |x1, . . . , xn ∈ F}. Then V forms a vector space over F under the

following operations:

(x1, . . . , xn)⊕ (y1, . . . , yn) = (x1 + y1, . . . , xn + yn),

α� (x1, . . . , xn) = (αx1, . . . , αxn)

for all (x1, . . . , xn), (y1, . . . , yn) ∈ V and α ∈ F.

3. The set of all m×n matrices Mm×n(F) with entries from the field F is a vector space over the field

F under the following operations:

(aij)⊕ (bij) = (aij + bij), and α� (aij) = (αaij),
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for all A = (aij), B = (bij) ∈Mm×n(F) and α ∈ F.

4. Let X be a non-empty set. Let V be the set of all the functions from X to R. Then V forms a

vector space over R under the following operations: (f ⊕ g)(x) = f(x) + g(x) and (α � f)(x) = αf(x),

for all x ∈ X, f, g ∈ V , and α ∈ R.

5. Let Pn = {a0 + a1x+ . . .+ anx
n | a0, a1, . . . , an ∈ F}. The set Pn forms a vector space over F under

the following operations:

(a0 + a1x+ · · ·+ anx
n)⊕ (b0 + b1x+ . . .+ bnx

n) = (a0 + b0) + (a1 + b1)x+ · · ·+ (an + bn)xn

α� (a0 + a1x+ · · ·+ anx
n) = (αa0 + αa1x+ · · ·+ αanx

n)

for all (a0 + a1x+ · · ·+ anx
n), (b0 + b1x+ · · ·+ bnx

n) ∈ Pn and α ∈ F.

6. R2 over R is not a vector space with respect to the following operations

(x1, y1)⊕ (x2, y2) = (x1 + x2 + 1, y1 + y2 + 1)

α� (x, y) = (αx, αy),

where (x1, y1), (x2, y2), (x, y) ∈ R2 and α ∈ R. To see this, we need to find which property is not satisfied.

Let (x1, y1), (x2, y2) ∈ R2 and α ∈ R. Then

α� ((x1, y1)⊕ (x2, y2)) = α� (x1 + x2 + 1, y1 + y2 + 1)

= (α(x1 + x2 + 1), α(y1 + y2 + 1))

= (αx1 + αx2 + α, αy1 + αy2 + α)

6= α� (x1, y1)⊕ α� (x2, y2)

Take α = 2 and (x1, y1) = (1, 1) = (x2, y2).

Remark 3. If F1 is a subfield of F, then F(F1) forms a vector space but converse is not true. For example,

C(R) is a vector space but R(C) is not a vector space.

Note: If there is no confusion between the operations on a vector space and the operations on the

field, we simply write ⊕ by + and � by ·.

Theorem 4. Let V be a vector space over F. Then

1. 0 · v = 0, where 0 and 0 are additive identity of F and V respectively, and v ∈ V .

2. α · 0 = 0 ∀α ∈ F.

3. (−1) · v = −v.
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4. if α ∈ F and v ∈ V such that α · v = 0, then either α = 0 or v = 0.

Proof: For the first statement, we write 0 = 0 + 0 so that

0 · v = (0 + 0) · v
0 · v = 0 · v + 0 · v (Condition 6.)

0 · v + (−0 · v) = 0 · v + 0 · v + (−0 · v) (using additive inverse)

0 · v + (−0 · v) = 0 · v + (0 · v + (−0 · v)) (using additive inverse and additive associativity)

0 = 0 · v + 0 = 0 · v.

For the second statement, write 0 = 0 + 0 so that

α · 0 = α · (0 + 0)

α · 0 = α · 0 + α · 0 (Condition 5.)

α · 0 + (−α · 0) = α · 0 + α · 0 + (−α · 0) (using additive inverse)

α · 0 + (−α · 0) = α · 0 + (α · 0 + (−α · 0)) (using additive inverse and additive associativity)

0 = α · 0 + 0 = α · 0.

For the third statement, we write 0 = (−1) + 1 so that
0 · v = ((−1) + (1)) · v
0 · v = (−1) · v + 1 · v (using Condition 5.)

0 = (−1) · v + v (using the first statement and Condition 8.)

0 + (−v) = (−1) · v + (v + (−v)) (ussing additive inverse and associativity)

−v = (−1) · v + 0 = (−1) · v.

Prove the fourth statement yourself.

Definition 5. Let V be a vector space over the field F. A subspace of V is a non-empty subset W of V

which is itself a vector space over F with the operations of vector addition and scalar multiplication on

V .

Example The subsets {0} and V are subspaces of a vector space V . These subspaces are called trivial

subspaces of V .

Theorem 6. Let V be a vector space over the field F and W ⊆ V . Then W is subspace of V if and only

if αw1 + βw2 ∈ W , for all w1, w2 ∈ W and α, β ∈ F.

Proof: Direct part follows from the definition of subspace. Conversely, if α = 1 and β = 1, then we

see that w1 +w2 ∈ W ∀w1, w2 ∈ W , also if β = 0, then αw1 ∈ V ∀α ∈ F and w1 ∈ W . Thus, W is closed

under vector addition and scalar multiplication. Further, let α = β = −1 and w1 = w2. Then 0 ∈ W ,
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i.e., zero vector of V lies in W . The rest of the properties trivially true as the elements are from vector

space V . Thus, W is a vector space over F. �

Example 7. 1. A line passing through origin is a subspace of R2 over R.

2. Let A be an m× n matrix over F. Then the set of all n× 1 (column) matrices x over F such that

Ax = 0 is a subspace of the space of all n × 1 matrices over F or Fn. To see this we need to show that

A(αx+ y) = 0, when Ax = 0, Ay = 0, and α is an arbitrary scalar in F.

3. The solution set of a system of non-homogeneous linear equations is not a subspace of Fn over F.

4. The collection of polynomial of degree less than or equal to n over R with the constant term 0

forms a subspace of the space of polynomials of degree less than or equal to n.

5. The collection of polynomial of degree n over R is not a subspace of the space of polynomials of

degree less than or equal to n.

Theorem 8. Let W1 and W2 be subspaces of a vector space V over F. Then W1 ∩W2 is a subspace of

V .

Proof: Since W1 and W2 are subspaces, 0 ∈ W1 ∩ W2 so that W1 ∩ W2 is a non-empty set. Let

w,w′ ∈ W1∩W2 and α, β ∈ F. Then αw+βw′ ∈ W1 as W1 is a subspace of V and w,w′ ∈ W1. Similarly,

αw + βw′ ∈ W2. Thus, αw + βw′ ∈ W1 ∩W2. By Theorem 6, W1 ∩W2 is a subspace of V .

Remark 9. The above theorem can be generalized for any number of subspaces. However, the union of

two subspaces need not be a subspace. Let V = R2, W = X-axis and W ′ = Y -axis. Then (1, 0) ∈ W
and (0, 1) ∈ W ′ but (1, 0) + (0, 1) = (1, 1) 6∈ W ∪W ′. The union of two subspaces is a subspace if one is

contained in other.
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