Lecture 6

Vector Space and Its Properties

Definition 1. Let F be a field with binary operations + (addition) and - (multiplication). A non empty
set V' is called a vector space over the field F if there exist two operations, called vector addition & and

scalar multiplication ©,

VXV -—=V and O :FxV-—V,

such that the following conditions are satisfied.

1. Vector addition is associative, i.e., v; @ (vy ® v3) = (v1 D v9) ® v3 for all vy, ve,v3 € V;

2. There is a unique vector 0 € V, called the zero vector, such that v ®0=v=0& v for all v € V;

3. For each vector v € V' there is a unique vector —v € V' such that v @ (—v) = 0;

4. Vector addition is commutative, i.e., v1 @ vo = vy @ vy for all vy, vy € V;

5. a®@ (v Bvy) =a®v &a®u for all v,v; € V and a € F;

6. (a+pB)Ov=acvdfouvioralveV and a,p €T,

7. (a-f)Ov=a@ (o) foralveV and a,f € TF;

8. 1 ®wv = v, where 1 is the multiplicative identity of the field F.

If V' is a vector space over the field F, we denote it by V(F). The elements of V' are called vectors
and elements of F are called scalars.

Example 2. 1. R(R), C(C) and C(R) are vector spaces under their usual addition and scalar multipli-

cation.

2. Let V. =F" = {(x1,...,2,) | 21,...,2, € F}. Then V forms a vector space over F under the

following operations:

($1,---,5En)@(yl,---a?/n): (x1+y17"'7$n+yn>;
a® (z1,...,x,) = (ry, ..., an,)

for all (x1,...,2,),(Y1,...,yn) €V and a € F.

3. The set of all m x n matrices M, (F) with entries from the field F is a vector space over the field

F under the following operations:
(aij) ® (bij) = (aij + bij), and a © (a;;) = (aay),
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for all A = (a;j), B = (bij) € Myxn(F) and o € F.

4. Let X be a non-empty set. Let V be the set of all the functions from X to R. Then V forms a
vector space over R under the following operations: (f @ g)(x) = f(z) + g(x) and (a ® f)(x) = af(x),
forallz e X, f,geV, and a € R.

5. Let P, ={ap+a1x+...+a,x"|agp,a,...,a, € F}. The set P, forms a vector space over F under

the following operations:
(ap+ a1z + -+ anz”™) ® (bg + byx + ...+ b,z") = (ag + bo) + (a1 + b1)x + - - + (a, + b,)z"
a® (ag+ax + -+ ayz™) = (aay + a1z + - -+ + aayz")
for all (ap + a1z + - - - + aya™), (b + byz + - - - + bya™) € P, and o € F.

6. R? over R is not a vector space with respect to the following operations

(x1,91) @ (T2,2) = (w1 + 22+ Lyn + 2 + 1)
a®(z,y) = (ar,ay),

where (x1,y1), (T2,y2), (x,y) € R? and o € R. To see this, we need to find which property is not satisfied.
Let (z1,11), (22,y2) € R? and o € R. Then

a® (@ +ze+1,y1 +y2+1)
alxy+zo+ 1),y +y2 + 1))

a® ((v1,y1) ® (T2, y2))

= (
= (axy + azy + a, ay; + ays + @)
Fa® (r1,y1) D a® (72,y0)

Take o = 2 and (z1,y1) = (1,1) = (72,92).
Remark 3. If F; is a subfield of F, then F(IF;) forms a vector space but converse is not true. For example,
C(R) is a vector space but R(C) is not a vector space.

Note: If there is no confusion between the operations on a vector space and the operations on the
field, we simply write & by + and ® by -.

Theorem 4. Let V' be a vector space over F. Then

1. 0-v =0, where 0 and 0 are additive identity of F and V respectively, and v € V.
2. -0=0 Vack.

3. (-1)-v=—v.



4. if « € F and v € V such that - v = 0, then either « =0 or v = 0.

Proof: For the first statement, we write 0 = 0 + 0 so that
0-v=(0+0) v
0-v=0-v+0-v (Condition 6.)
0O-v+(—0-v)=0-v+0-v+(—0-v) (using additive inverse)
0-v+(—0-v)=0-v+(0-v+(—0-v)) (using additive inverse and additive associativity)
0=0-v4+0=0"v.

For the second statement, write 0 = 0 + 0 so that

a-0=a-(0+0)
a-0=a-0+a-0 (Condition 5.)
a-0+(—a-0)=a-0+a-0+(—«a-0) (using additive inverse)
a-0+(—a-0)=a-0+(a-0+ (—a-0)) (using additive inverse and additive associativity)
O0=a-0+0=a-0.

For the third statement, we write 0 = (—1) + 1 so that
O'UZ((—1)+(1))'U

-v=(—1)-v+1-v (using Condition 5.)
0= (—1)-v+wv (using the first statement and Condition 8.)

0+ (—v)=(-1)-v+ (v+(—v)) (ussing additive inverse and associativity)
—v=(-1)-v+0=(-1) .

Prove the fourth statement yourself.

Definition 5. Let V be a vector space over the field F. A subspace of V' is a non-empty subset W of V'

which is itself a vector space over F with the operations of vector addition and scalar multiplication on

V.

Example The subsets {0} and V' are subspaces of a vector space V. These subspaces are called trivial

subspaces of V.

Theorem 6. Let V be a vector space over the field F and W C V. Then W is subspace of V' if and only

if cwy + Bwy € W, for all wy,wy € W and o, 3 € F.

Proof: Direct part follows from the definition of subspace. Conversely, if « =1 and § = 1, then we
see that wy +wy € W Ywy,wy € W, also if =0, then aw;, € V Va € F and wy, € W. Thus, W is closed

under vector addition and scalar multiplication. Further, let « = f = —1 and w; = w,. Then 0 € W,
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1.e., zero vector of V lies in W. The rest of the properties trivially true as the elements are from vector

space V. Thus, W is a vector space over F. 0
Example 7. 1. A line passing through origin is a subspace of R? over R.

2. Let A be an m x n matrix over F. Then the set of all n x 1 (column) matrices = over IF such that
Ax = 0 is a subspace of the space of all n x 1 matrices over F or F". To see this we need to show that

A(ax +y) =0, when Az =0, Ay = 0, and « is an arbitrary scalar in F.
3. The solution set of a system of non-homogeneous linear equations is not a subspace of F" over F.

4. The collection of polynomial of degree less than or equal to n over R with the constant term 0

forms a subspace of the space of polynomials of degree less than or equal to n.

5. The collection of polynomial of degree n over R is not a subspace of the space of polynomials of
degree less than or equal to n.

Theorem 8. Let W, and W5 be subspaces of a vector space V over F. Then W; N W is a subspace of
V.

Proof: Since W; and W, are subspaces, 0 € W; N W; so that W; N W, is a non-empty set. Let
w,w € WiNWs, and «, 8 € F. Then aw + pw’ € Wi as W is a subspace of V and w, w’ € Wj. Similarly,
oaw + pw’ € Wy, Thus, aw + fw’ € Wi N Wy. By Theorem 6, Wi N W, is a subspace of V.

Remark 9. The above theorem can be generalized for any number of subspaces. However, the union of
two subspaces need not be a subspace. Let V = R? W = X-axis and W’ = Y-axis. Then (1,0) € W
and (0,1) € W’ but (1,0) + (0,1) = (1,1) ¢ W U W’. The union of two subspaces is a subspace if one is
contained in other.



