Lecture 21
Decomposition of a Matrix in Terms of Projections

Here we discuss a special kind of linear maps (matrices), called projection and their properties. Further,
we see that every diagonalizable matrix can be decomposed into projection matrices.

Definition 1. Let V' be a vector space over F. A linear map E : V — V is called a projection if E* = E.
A matriz M is called a projection matriz if M? = M, i.e., M is idempotent.

Theorem 2. Let E : V — V be a projection. Let R be the range of E and N be its null space. Then
V=R®N.
Proof: It is easy to see that RN N = {0}. Forve V, letv=v— Fv+ Eve N+ R.

Theorem 3. Let R and N be subspaces of a vector space V' such that V = R & N. Then there is a
projection map E on V' such that the range of E is R and the null space of E is N.

Proof: Define E:V — V as E(r +n) =r.

Definition 4. A wvector space V' is said to be a direct sum of k subspaces Wy, Wo, ... Wy of V. =W, +
Wo+ -+ Wi and W,n (W +Wo + -+ Wiy + Wigq + -+« + Wy) = {0} for each i.

Theorem 5. If V =W, & W,...d Wy, then there exist k linear maps Fy, ..., E, on V such that:

1. Fach E; is projection,
2. E;E; =0 for alli # 7,
3 Er+...+ By =1,

4. the range of E; is W;.

Proof. Let v € V. Then v = wy + wy + - -+ + wyg, where w; € W;. Define E; : V. — V as E;(v) =
Ei(wy + ...+ wy) = w; for all i. Then F; is linear with E?(v) = v for all v € V. Also E;E; = 0 for all
1# jand Fy 4 ...+ Ey = I. By definition of E;, range of E; is W;. O

Lemma 6. Let A € M,(F). The matriz A is diagonalizable if and only if F* = E\, & - -- & E),, where
Ai € F and \; # N\j for i # j and E), is the eigenspace of \;.

Proof. Let A be diagonalizable. Recall that if B; is a basis of the eigenspace Ey,, then US| B; is a basis
of V.=F" Thus V = E)\l —f-—f—E)\k Let v € E’)\iﬂ(E'A1 —|—E)\2 +"'+E)\1:—1 +E>\i+1 —|——|—E>\k)
Then Av = A\wv and v = vy + vy + -+ + Vi1 + Vg1 + -+ + v, where v; € Ey; and j # i. Then
Av = /\1U1 + )\21)2 + -+ )\i_lvi_l + >\i+1vi+l + -+ )\kvk so that ()\1 — )\1)’01 + -+ ()\z - Ai—l)vi—l +
(A = Nig1)vipr + -+ (N — Mp)vg = 0. If v is non-zero, not all v; are zero. Note that if v; # 0, it is an
eigenvector corresponding to A;, but eigenvectors corresponding to distinct eigenvalues are independent,

hence \; = A; for some j # 7, which is a contradiction. O]
Theorem 7. Let A be a diagonalizable matrixz with distinct eigenvalues \q,...,\,. Then A can be
decomposed as a linear sum of idempotent (projection) matrices Ey, . .., Ey given by A = M Ey+. . .+ E.
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Proof: The matrix A is diagonalizable so that the minimal polynomial of A is (z — A1) ... (z — Ag).
Define

B (A—=XMI) ... (A= XN D)(A=XNjl) ... (A= M)
T =M =D = ) (= )

Let v € V, then v = vy + vy + -+ + vy, where v; € E),. Let v; € E,,, then Ej(v;) = 0 if ¢ # j and
E;(v;) = v; so that E;(v) = Ej(vy +va+ -+ + ) = Ej(n1) + Ej(v2) + -+ + Ej(vg) = v;. Thus
E; is a projection matrix. One can see that (i) E? = E;, (ii) E;E; = 0 and [ = E; + ... + Ei (left
to the reader to verify). Now [ = FE} + Fy + -+ + Ej so that A = AFE; + AEy + --- + AFEy. Then
Av = A(Ul B N R Uk) = )\1’01 + )\21)2 + )\kvk = )\1E1<U) + )\QEQ(U) + -+ )\kEk(U) for all v € V.
Therefore, A = A\ E1 + AoFEy + -+ + A\ E}.

5 —6 —6
Example: Check the diagonalizability of the given matrix | —1 4 2 | . If diagonalizable, write the
3 —6 —4

matrix as linear sum of projection matrices.

Solution: The characteristic polynomial p(z) = (z — 1)(z — 2)?. Let Ay = 1 and Ay = 2. Then
GM (1) = and eigenvectors corresponding to 2 are vy = (2,1,0) and (2,0,1) so that GM (2) = 2. Hence,
the matrix is diagonalizable. Then as per the above theory, £y = (2] — A) and Ey = (A — I) and hence,
A=1(2I — A) + 2(A — I). Verify yourself that E? = F; for i = 1, 2.



