Lecture 21 Decomposition of a Matrix in Terms of Projections Here we discuss a special kind of linear maps (matrices), called projection and their properties. Further, we see that every diagonalizable matrix can be decomposed into projection matrices. **Definition 1.** Let V be a vector space over \mathbb{F} . A linear map $E: V \to V$ is called a projection if $E^2 = E$. A matrix M is called a projection matrix if $M^2 = M$, i.e., M is idempotent. **Theorem 2.** Let $E: V \to V$ be a projection. Let R be the range of E and N be its null space. Then $V = R \oplus N$. **Proof:** It is easy to see that $R \cap N = \{0\}$. For $v \in V$, let $v = v - Ev + Ev \in N + R$. **Theorem 3.** Let R and N be subspaces of a vector space V such that $V = R \oplus N$. Then there is a projection map E on V such that the range of E is R and the null space of E is N. **Proof:** Define $E: V \to V$ as E(r+n) = r. **Definition 4.** A vector space V is said to be a direct sum of k subspaces W_1, W_2, \ldots, W_k if $V = W_1 + W_2 + \cdots + W_k$ and $W_i \cap (W_1 + W_2 + \cdots + W_{i-1} + W_{i+1} + \cdots + W_k) = \{0\}$ for each i. **Theorem 5.** If $V = W_1 \oplus W_2 \dots \oplus W_k$, then there exist k linear maps E_1, \dots, E_k on V such that: - 1. Each E_i is projection, - 2. $E_i E_j = 0$ for all $i \neq j$, - 3. $E_1 + \ldots + E_k = I$, - 4. the range of E_i is W_i . Proof. Let $v \in V$. Then $v = w_1 + w_2 + \cdots + w_k$, where $w_i \in W_i$. Define $E_i : V \to V$ as $E_i(v) = E_i(w_1 + \ldots + w_k) = w_i$ for all i. Then E_i is linear with $E_i^2(v) = v$ for all $v \in V$. Also $E_iE_j = 0$ for all $i \neq j$ and $E_1 + \ldots + E_k = I$. By definition of E_i , range of E_i is W_i . **Lemma 6.** Let $A \in M_n(\mathbb{F})$. The matrix A is diagonalizable if and only if $\mathbb{F}^n = E_{\lambda_1} \oplus \cdots \oplus E_{\lambda_k}$, where $\lambda_i \in \mathbb{F}$ and $\lambda_i \neq \lambda_j$ for $i \neq j$ and E_{λ_i} is the eigenspace of λ_i . Proof. Let A be diagonalizable. Recall that if B_i is a basis of the eigenspace E_{λ_i} , then $\bigcup_{i=1}^k B_i$ is a basis of $V = \mathbb{F}^n$. Thus $V = E_{\lambda_1} + \dots + E_{\lambda_k}$. Let $v \in E_{\lambda_i} \cap (E_{\lambda_1} + E_{\lambda_2} + \dots + E_{\lambda_{i-1}} + E_{\lambda_{i+1}} + \dots + E_{\lambda_k})$. Then $Av = \lambda_i v$ and $v = v_1 + v_2 + \dots + v_{i-1} + v_{i+1} + \dots + v_k$, where $v_j \in E_{\lambda_j}$ and $j \neq i$. Then $Av = \lambda_1 v_1 + \lambda_2 v_2 + \dots + \lambda_{i-1} v_{i-1} + \lambda_{i+1} v_{i+1} + \dots + \lambda_k v_k$ so that $(\lambda_i - \lambda_1) v_1 + \dots + (\lambda_i - \lambda_{i-1}) v_{i-1} + (\lambda_i - \lambda_{i+1}) v_{i+1} + \dots + (\lambda_i - \lambda_k) v_k = 0$. If v is non-zero, not all v_i are zero. Note that if $v_j \neq 0$, it is an eigenvector corresponding to λ_j , but eigenvectors corresponding to distinct eigenvalues are independent, hence $\lambda_i = \lambda_j$ for some $j \neq i$, which is a contradiction. **Theorem 7.** Let A be a diagonalizable matrix with distinct eigenvalues $\lambda_1, \ldots, \lambda_k$. Then A can be decomposed as a linear sum of idempotent (projection) matrices E_1, \ldots, E_k given by $A = \lambda_1 E_1 + \ldots + \lambda_k E_k$. **Proof:** The matrix A is diagonalizable so that the minimal polynomial of A is $(x - \lambda_1) \dots (x - \lambda_k)$. Define $$E_{j} = \frac{(A - \lambda_{1}I) \dots (A - \lambda_{j-1}I)(A - \lambda_{j+1}I) \dots (A - \lambda_{k}I)}{(\lambda_{j} - \lambda_{1}) \dots (\lambda_{j} - \lambda_{j-1})(\lambda_{j} - \lambda_{j+1}) \dots (\lambda_{j} - \lambda_{k})}.$$ Let $v \in V$, then $v = v_1 + v_2 + \cdots + v_k$, where $v_i \in E_{\lambda_i}$. Let $v_i \in E_{\lambda_i}$, then $E_j(v_i) = 0$ if $i \neq j$ and $E_j(v_j) = v_j$ so that $E_j(v) = E_j(v_1 + v_2 + \cdots + v_k) = E_j(v_1) + E_j(v_2) + \cdots + E_j(v_k) = v_j$. Thus E_j is a projection matrix. One can see that (i) $E_i^2 = E_i$, (ii) $E_i E_j = 0$ and $I = E_1 + \cdots + E_k$ (left to the reader to verify). Now $I = E_1 + E_2 + \cdots + E_k$ so that $A = AE_1 + AE_2 + \cdots + AE_k$. Then $Av = A(v_1 + v_2 + \cdots + v_k) = \lambda_1 v_1 + \lambda_2 v_2 + \lambda_k v_k = \lambda_1 E_1(v) + \lambda_2 E_2(v) + \cdots + \lambda_k E_k(v)$ for all $v \in V$. Therefore, $A = \lambda_1 E_1 + \lambda_2 E_2 + \cdots + \lambda_k E_k$. **Example:** Check the diagonalizability of the given matrix $\begin{pmatrix} 5 & -6 & -6 \\ -1 & 4 & 2 \\ 3 & -6 & -4 \end{pmatrix}$. If diagonalizable, write the matrix as linear sum of projection matrices. **Solution:** The characteristic polynomial $p(x) = (x-1)(x-2)^2$. Let $\lambda_1 = 1$ and $\lambda_2 = 2$. Then GM(1) = and eigenvectors corresponding to 2 are $v_2 = (2,1,0)$ and (2,0,1) so that GM(2) = 2. Hence, the matrix is diagonalizable. Then as per the above theory, $E_1 = (2I - A)$ and $E_2 = (A - I)$ and hence, A = 1(2I - A) + 2(A - I). Verify yourself that $E_i^2 = E_i$ for i = 1, 2.