
Lecture 14 (Eigenvalue & Eigenvector)

Definition 1. Let V be a vector space over F and T : V → V be a linear transformation. Then

1. a scalar λ ∈ F is said to be an eigenvalue or characteristic value of T if there exists a non-zero

vector v ∈ V such that Tv = λv.

2. a non-zero vector v satisfying Tv = λv is called eigenvector or characteristic vector of T associ-

ated to the eigenvalue λ.

3. The set Eλ = {v ∈ V : Tv = λv} is called the eigenspace of T associated to the eigenvalue λ.

Example 2. Let V be a non-zero vector space over F.
1. If T is the zero operator, zero is the only eigenvalue of T .

2. For identity operator, one is the only eigenvalue.

3. Let T : R2 → R2 given by T (x, y) = (0, x). Then T (x, y) = λ(x, y)⇔ (0, x) = (λx, λy)⇔ (λx = 0, y =

λy ⇔ λ = 0, x = 0, y 6= 0. Thus, 0 is the eigenvalue of T and (0, 1) is an eigenvector corresponding to 0.

4. Let T : R2 → R2 given by T (x, y) = (y,−x). Then T (x, y) = λ(x, y) ⇔ (y,−x) = (λx, λy) ⇔
(λ2 + 1)x = 0⇔ λ = ±i, x 6= 0. Thus, T has no real eigenvalue.

5. Let T : C2 → C2 given by T (x, y) = (y,−x). Then T (x, y) = λ(x, y) ⇔ (y,−x) = (λx, λy) ⇔
(λ2 + 1)x = 0 ⇔ λ = ±i, x 6= 0. Thus, T has two complex eigenvalues ±i and (1, i) is an eigenvector

corresponding to i and (1,−i) is an eigenvector corresponding to −i.

5. Let T : R2 → R2 given by T (x, y) = (2x + 3y, 3x + 2y). To find λ ∈ R and (x, y) ∈ R2 such

that (2x+ 3y, 3x+ 2y) = λ(x, y) or (2− λ)x+ 3y = 0, 3x+ (2− λ)y = 0. The system of linear equations

has a non-zero solution if and only if the determinant of the coefficient matrix, det

(
2− λ 3

3 2− λ

)
= 0

or λ = −1, 5. When λ = 1, 3x + 3y = 0 so that (1,−1) is an eigenvector ((−a, a) are eigenvectors of

corresponding to eigenvalue -1 for every a 6= 0). For λ = 5, 3x− 3y = 0 so that (1, 1) is an eigenvector

(in fact, (a, a) is an eigenvector corresponding to eigenvalue 5 for a 6= 0).

Theorem 3. Let T be a linear operator on a finite-dimensional vector space V (F) and λ ∈ F. The

following statements are equivalent.

1. λ is an eigenvalue of T.

2. The operator T − λI is singular (not invertible).

3. det[(T − λI)]B = 0, where B is an ordered basis of V.

Proof. A linear transformation T is singular if and only if ker(T ) 6= {0}. Thus, (1) ⇐⇒ (2). if

V (F) is finite-dimensional, then the eigenvalues and eigenvectors of T can be determined by its ma-

trix representation [T ]B with respect to a basis B. A scalar λ is an eigenvalue of T ⇔ Tv = λv ⇔
[T ]B[v]B = λ[v]B ⇔ ([T ]B − λI)[v]B = 0 for non zero v. Thus, (3)⇔ (1).
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Definition 4. Let A ∈ Mn(F). A scalar λ ∈ F is said to be an eigenvalue of A if there exists a

non-zero vector x ∈ Fn such that Ax = λx. Such a non-zero vector x is called an eigenvector of A

associated to the eigenvalue λ.

Let A ∈Mn(F). Observe, det(xI −A) is an n degree polynomial in x over F. A scalar λ is an eigenvalue

of A⇔ det(A− λI) = 0 or det(λI − A) = 0.

Definition 5. Let A ∈ Mn(F). Then the polynomial f(x) = det(xI − A) is called the characteristic

polynomial of A. The equation det(xI − A) = 0 is called the characteristic equation of A.

Theorem 6. A scalar λ ∈ C is an eigenvalue if and only if λ is a root of the characteristic polynomial

of A.

Example 7. Let A =


1 1 0

0 1 1

1 0 1

 . The characteristic polynomial of A is det


x− 1 −1 0

0 x− 1 −1

−1 0 x− 1

 ,

that is, x3 − 3x2 + 3x − 2 = (x − 2)(x2 − x + 1). Thus, the roots are λ = 2, 1±
√
3i

2
. If F = R, the only

eigenvalue of A is 2 and if F = C, the eigenvalues are 2, 1±
√
3i

2
. We leave it to the reader to find the

corresponding eigenvectors over the field C. In this example, we see that a real matrix over C may have

complex eigenvalues.

Example 8. Consider a matrix A =

(
0 1

−1 0

)
. The characteristic polynomial is x2 +1 and the roots are

±i. Thus, A has no eigenvalue over R and two eigenvalues over C. Note that, the existence of eigenvalue

depends on the field.

Properties of eigenvalue and eigenvector

1. Let A ∈ Mn(C). Then the sum of eigenvalues is equal to the trace of the matrix and the product

of eigenvalues is equal to the determinant of the matrix.

Let

A =


a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
...

...

an1 an2 . . . ann

 .

Then the characteristic polynomial of A is f(λ) = |λI − A| = a0λ
n + a1λ

n−1 + . . . + an with roots

λ1, λ2, . . . , λn. Then λ1 + λ2 + . . .+ λn = −a1
a0

and λ1λ2 . . . λn = (−1)n an
a0

.
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Note that a0 = 1, f(0) = an = | − A| = (−1)n|A| and a1 = −(a11 + a22 + . . . + ann). Therefore,

λ1 + λ2 + . . . + λn = −a1
a0

= (a11 + a22 + . . . + ann) = trace(A) and λ1λ2 . . . λn = (−1)n an
a0

= |A| =
det(A).

2. If A is a non-singular matrix and λ is any eigenvalue of A, then λ−1 is an eigenvalue of A−1.

Let λ be an eigenvalue of A, then there exists 0 6= x ∈ Fn such that Ax = λx ⇔ A−1x = 1
λ
x.

3. A and and AT have the same eigenvalues.

It is enough to show that A and AT have the same characteristic polynomials. The characteristic

polynomial of A is |λI − A| = |(λI − A)T | = |λI − AT |=characteristic polynomial of AT .

4. Similar matrices have the same eigenvalues (or characteristic equations).

Let A and B are two matrices which are similar then there exists an invertible matrix P such that

A = P−1BP . Then characteristic polynomial of A is |λI−A| = |λI−P−1BP | = |P−1(λI−B)P | =
|λI −B|.

5. If λ is an eigenvalue of A, then λk is an eigenvalue of Ak for a positive integer k.

6. Let µ ∈ F and A ∈ Mn(F). Then λ ∈ F is an eigenvalue of A if and only if λ ± µ is eigenvalue of

A± µI.
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