
Lecture 13

Rank of a matrix & System of linear equations

Definition 1. Let A ∈ Mm×n(F). The column space of A is the linear span of columns of A,

i.e., column space(A) = L({(a11, a21, . . . , am1), . . . , (a1n, a2n, . . . , amn)}) ⊆ Fm, and the row space

of A is the linear span of the rows of A, i.e., the row space(A) = L({(a11, a12, . . . , a1n), . . . , (a1n, a2n,

. . . , amn}) ⊆ Fn. The dimension of the column space of (A) is called the column rank of A and

dimension of the row space of (A) is called the row rank of A.

Theorem 2. Let A ∈Mm×n(F). Then Row rank(A) = Column rank(A).

Proof: Let R1, R2, . . . , Rm be the rows of A. Then the ith vector Ri = (ai1, ai2, . . . , ain). Suppose

dimension of the row space of A is s and {v1, v2, . . . , vs} is a basis of the row space of A. Then

R1 = c11v1 + c12v2 + . . .+ c1svs

R2 = c21v1 + c22v2 + . . .+ c2svs

...

Rm = cm1v1 + cm2v2 + . . .+ cmsvs

Let vj = (bj1, bj2, . . . , bjn) for 1 ≤ j ≤ s. Then a1i = c11b1i + c12b2i + c1sbsi, a2i = c21b1i + c22b2i +

c2sbsi, . . ., ami = cm1b1i + cm2b2i + cmsbsi. This implies, (a1i, a2i, . . . , ami) = b1i(c11, c21, . . . , cm1) +

. . . + bsi(c1s, c2s, cms). Thus, each column vector is a linear combination of s vectors {(c11, c21, . . . ,
cm1), (c12, c22, . . . , cm2), . . . , (c1s, c2s, . . . , cms)}. Therefore, dim(column space) ≤ s = dim(row space).

Similarly, we can show that dim(row space) ≤ s = dim(column space). �

Definition 3. The rank of a matrix A is the dimension of row space of A (or the dimension of column

space of A).

Definition 4. The nullity of a matrix A is the dimension of the solution space of Ax = 0.

Theorem 5 (Rank-Nullity Theorem for a Matrix). Let A ∈Mm×n(R). Then

rank(A) + nullity(A) = number of columns of A.

Proof. Recall that there is a one to one correspondence between L(Rn,Rm) and Mm×n(R). Consider the

map φ such that T 7→ [T ]B
′

B , where B and B′ be the standard bases for Rn and Rm respectively. Then

φ is linear one-one and onto. For onto, given a matrix A, take the linear transformation TA given by

TA(x) = Ax.

Remark 6. 1. The rank of a matrix A is same as the number of non-zero rows in its RRE form.
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Proof. Let the number of non zero rows in the RRE form of A is r. Observe that a row obtained by

applying an elementary row operation is nothing but a linear combination of rows of the matrix, and the

rows in RRE form are LI. Therefore, the dimension of row space or rank of A is r.

Determinantal-Rank of a matrix

Let A ∈Mm×n(R). Then A has determinantal-rank r if

1. every k × k submatrix of A has zero determinant, where k > r;

2.there exist an r × r submatrix with non-zero determinant.

Theorem 7. Rank(A)=Determinantal Rank(A).

Proof. Let rank(A) = l and determinantal-rank(A) = r. We show that r = l. Since determinantal-

rank(A) = r, there exists an r × r submatrix R with non-zero determinant so that rank(R) = r, equiv-

alently, all rows of R are linearly independent. Then the corresponding r rows of matrix A are LI.

Therefore, r ≤ rank(A).

Let B be a submatrix of A consisting of linearly independent rows of A. Let rank(A) = l. Then order

of B is l×n and rank(B) is l. Hence, B has l linearly independent columns. Consider an l× l submatrix

B′ of B (also a submatrix of A) having those l linearly independent columnsof B. Then rank(B′) = l so

that |B′| 6= 0. Therefore, l ≤ r.

Application of rank in system of linear equations

First we recall a result on system of linear equation:

Theorem 8. Let Ax = b be a non-homogeneous system of linear equations, and Ax = 0 be the associated

homogeneous system. If Ax = b is consistent and x0 is a particular solution of Ax = b, then any solution

of Ax = b can be written as x = xh + x0, where xh is a solution of Ax = 0.

Let A ∈Mm×n(R) and Rank(A) = r. Suppose Ax = b is a non-homogeneous system of linear equations,

and Ax = 0 is the associated homogeneous system. Then

1. Ax = b is consistent if and only if Rank(A | b) = r.

Solution: If Ax = b is consistent, then b ∈ Column Space(A) so that Rank(A | b) = r. Similarly,

the other way.

2. Let Ax = b be consistent. Then the solution is unique if and only if r = n.

Solution: Let Ax = b have a unique solution. Then Ax = 0 has a unique solution, i.e., the zero

solution. This implies nullity(A) = 0. Then by rank-nullity theorem, we have n = rank(A) and

vice-versa.
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3. If r = m, then Ax = b always has a solution for every b ∈ Rm.

Solution: If r = m, then the column space is Rm. Thus each vector in Rm is a linear combination

of columns of A. Hence, Ax = b has a solution for all b ∈ Rm.

4. If r = m = n then Ax = b always has a unique solution for all b and further Ax = 0 has only zero

solution.

Solution: Since r = m, the column space is Rm. Therefore, Ax = b always has a solution for all

b. Further, nullity(A) = 0. Thus, Ax = 0 has only zero solution and hence, Ax = b always has a

unique solution all b.

5. If r = m < n, for any b ∈ Rm, Ax = b as well as Ax = 0 have infinitely many solutions.

Solution: Since r = m, Ax = b has a solution for all b ∈ Rm. Note that, nullity(A) = (n− r) > 0.

Therefore, Ax = 0 has infinitely many solutions and hence, Ax = b has infinitely many solutions.

6. In case (i) r < m = n, (ii) r < m < n and (iii) r < n < m, if Ax = b has a solution then there are

infinitely many solutions.

Solution: Note that nullity(A) = (n − r) > 0. Hence Ax = 0 has infinitely many solutions. Now

if Ax = b has a solutions then it has infinitely many solutions.

7. If r = n < m, then Ax = 0 has only zero solution and if Ax = b has a solution, the solution is

unique.

Solution: In this case, nullity(A) = 0, implies Ax = 0 has only trivial solution. If Ax = b has a

solution, then it is unique.

Example 9. Let T : P2(R) ⇒ R2 given by T (p(x)) = (p(0), p(1)). Find rank(T ), nullity(T ), basis of

ker(T ) and basis range(T ).

Solution: Let B = {1, x, x2} and B′ = {e1, e2}. Then

[T ]B
′

B =

(
1 0 0

1 1 1

)
= A.

RRE(A) =

(
1 0 0

0 1 1

)
. Thus, Rank(T ) = Rank(A) = 2 so that range of T is R2 and its basis is {e1, e2}.

Further, nullity(T ) = nullity(A) = nullity(RRE(A)) = 3 − 2 = 1. The solution space of Ay = 0 is

{(0, a,−a) | a ∈ R}. Note that y = [v]B, therefore, the ker(T ) = {ax + (−a)x2 | a ∈ R}. Hence, basis of

kernel T is {x− x2}.
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