
Lecture 11

Rank-Nullity theorem & Vector Space Isomorphism

Theorem 1. Rank-Nullity Theorem: Let V and W be vector spaces over the field F and let T : V →
W be a linear map. If V is finite dimensional then, nullity(T ) + rank(T ) = dim(V ).

Proof: Since Ker(T ) is a subspace of V , its dimension is finite, say n. Let B = {v1, . . . , vn} be a

basis for Ker(T ). Then B can be enlarged to form a basis for V . Let B
′

= {v1, . . . , vn, vn+1, . . . , vm}
be a basis for V . Now claim that the set S = {T (vn+1), . . . , T (vm)} forms a basis for Range(T ). Let

v ∈ V . Then v = α1v1 + . . . + αmvm, this implies T (v) = αn+1T (vn+1) + . . . + αmT (vm). Thus L(S) =

Range(T ). To show that S is linearly independent, assume that αn+1T (vn+1)+ . . .+αmT (vm) = 0. Then

T (αn+1vn+1+. . .+αmvm) = 0 so that αn+1vn+1+. . .+αmvm ∈ Ker(T ). Therefore, αn+1vn+1+. . .+αmvm =

β1v1 + . . .+ βnvn or
∑n

i=1 βivi +
∑m

i=n+1 αivi = 0. But B
′

is a basis for V . Therefore, αi = 0 and hence,

S is linearly independent. �

Recall that a function f : X → Y is invertible if there exits a function g : Y → X such that f ◦ g = IY

and g ◦ f = IX . Furthermore, a functionf is invertible if and only if it is one-one and onto, and the

inverse function g is given by g(y) = f−1(y).

Theorem 2. Let T : V → W be a linear map. If T is invertible, then the inverse map T−1 is linear.

Proof: Suppose T : V −→ W is invertible. Then T is one-one and onto. Let T−1 denote the inverse of

T . We want to show that T−1(αw1 +βw2) = αT−1(w1)+βT−1(w2). Let T−1(w1) = v1 and T−1(w2) = v2.

Then T (αv1+βv2) = αw1+βw2. Since T is one-one, T−1(αw1+βw2) = αv1+βv2 = αT−1(w1)+βT−1(w2).

Definition 3. A linear map T : V → W is said to be non-singular if Ker(T) = {0}.

Theorem 4. A linear map T : V → W is non-singular if and only if T is one-one.

Proof: Let T is non-singular. If T (x) = T (y), then T (x−y) = 0. This implies x−y ∈ Ker(T ) = {0}.
So x = y. Conversely, let x ∈ Ker(T ). Then T (x) = 0 = T (0), as T is one one. So x = 0. �

Theorem 5. Let V and W be finite-dimensional vector spaces over the field F such that dimV = dimW .

If T is a linear transformation from V to W , the following are equivalent:

(i) T is invertible.

(ii) T is non-singular.

(iii) T is onto, that is, the range of T is W .

Definition 6. Let V and W be vector spaces over the field F. An invertible linear transformation from

V to W is called an isomorphism. If there exists an isomorphism from V to W , we say that V and W

are isomorphic.
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Exercise 1. Show that isomorphism is an equivalence relation on finite dimensional vector spaces over

the field F.

Example 7. Show that R2(R) and C(R) are isomorphic.

Solution: Define T : R2 → C as T (x, y) = x + iy. Then T is linear and Ker(T ) = {(x, y) ∈ R2 |
x+ iy = 0 + 0i} = {(0, 0)}. Hence, T is one-one. Note that dimR2 = dimC = 2 over R. By rank-nullity

theorem, the map is onto.

Definition 8. Let V be a vector space of dimension n. A basis B is called an ordered basis if there is

an one to one map between B and the set {1, . . . , n}. In simple words, a basis B with an ordering of the

elements (of B) is called an ordered basis.

Definition 9. Let V be a vector space with an ordered basis B = {v1, v2, . . . , vn} over the field F. Then

for any v ∈ V there exists a unique (a1, a2, . . . , an) ∈ Fn such that v = a1v1 + a2v2 + . . . + anvn. Then

the column vector (a1, . . . , an)T , denoted as [v]B, is called the coordinate vector of v with respect to

the basis B.

For example, in Fn the coordinate vector of (x1, x2, . . . , xn) with respect to the standard basis {e1, . . . , en}
is (x1, x2, . . . , xn)T . Consider R2 with the basis B = {(1, 1), (1,−1)}. Let v = (x, y). Then (x, y) =

a1(1, 1) + a2(1,−1) if and only if a1 = x+y
2

and a2 = x−y
2
. Hence, [(x, y)]B = (x+y

2
, x−y

2
)T =

(
x+y
2

x−y
2

)
.

Consider another basis B′ = {(1, 2), (2, 1)}. Then [(x, y)]B′ =

(
2y−x
3

2x−y
3

)
. Thus, the coordinate vector of a

vector depends on the basis and it changes with a change of basis.

Theorem 10. Let V be an n-dimensional vector space over F. Then V ∼= Fn.

Proof: Let B = {v1, v2, . . . , vn} be an ordered basis of V (F). The map T : V → Fn given by

T (v) = [v]B is an isomorphism. First we show that T is linear. Let v, v′ ∈ V with [v]B = (a1, a2, . . . , an)T

and [v′]B = (b1, b2, . . . , bn)T . Then αv+βv′ = (αa1 +βb1)v1 + · · ·+ (αan +βbn)vn so that [(αv+βv′)]B =

(αa1 + βb1, . . . , αan + βbn)T = α(a1, . . . , an)T + β(b1, . . . , bn)T = αT (v) + βT (v′). Now ker(T ) = {v |
T (v) = 0} = {v | [v]B = 0} = {0}. Thus T is one-one and onto (rank-nullity theorem).

Corollary 11. Two finite-dimensional vector spaces V and W over the field F are isomorphic if and only

if dim(V ) = dim(W ).
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