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Abstract. Let X be a normed linear space. A map P : X → X is called idempotent if

P
2 = P . In this paper, we introduce some new classes of idempotent maps (linearity is not

assumed) on X and study their properties. A well-known example of idempotent map is the

metric projection PK onto a Chebyshev subset K of X. We provide some necessary conditions

for the map I − PK to be idempotent, where I denotes the identity operator on X.

1. Introduction and Statement of Main Results

Let X be a complex normed linear space. A map P : X → X is called idempotent if P 2 = P .

A bounded (continuous) and idempotent linear operator on X will be referred as projection.

Throughout this paper we follow this terminology, and no linearity is assumed when we consider

idempotent maps. Many (simple) properties of projections are not satisfied by idempotents due

to the lack of linearity structure in the later class. To illustrate this, we observe that if P is

an idempotent map on X, then I − P may not be idempotent, where I denotes the identity

operator on X. A simple example is to define P : X → X as P (x) = x
‖x‖ when x 6= 0 and

P (0) = 0, see [13]. In addition, the absence of linearity makes it more difficult to perform basic

algebraic computations on idempotent maps. If P , Q, and R are idempotent maps on X, then

(P + Q)R = PR + QR, but P (Q + R) = PQ + PR is not necessarily true. Indeed, for fixed

nonzero vectors a, b ∈ X, we define P,Q,R : X → X as P (x) = a when x 6= 0 and P (0) = 0,

Q(x) = b, R(x) = −b. Then P (Q+R) = 0 and (PQ+PR)(x) = 2a. Hence, new techniques are

needed to study idempotent maps, and we develop some of them in this paper. A known class

of idempotents maps are metric projections which we are going to recall and discuss in details.

We consider the following new classes of idempotent maps on a normed space X. Among

these classes are ones which are intertwined with surjective (not necessarily linear) isometries

supported by the underlying space. Isometries on normed spaces are distance-preserving maps,

that is, a map T : X → X is called an isometry if ‖Tx− Ty‖ = ‖x− y‖ for all x, y ∈ X.

Definition 1.1. Let X be a normed space. Let C = {P1, P2, . . . , Pk}, k ≥ 2, be a finite collection

of nonzero distinct idempotent maps on X. We say that C defines a partition of identity by

idempotents if
∑k

i=1
Pi = I.
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Definition 1.2. Let C = {P1, P2, . . . , Pk}, k ≥ 2, be a finite collection of nonzero distinct

idempotent maps on X which defines a partition of the identity by idempotents. Then C

(1) is said to be a commuting partition of the identity by idempotents if PiPj = PjPi

for i 6= j, i, j = 1, 2, . . . , k.

(2) is said to be an orthogonal partition of the identity by idempotents if PiPj = 0

for i 6= j, i, j = 1, 2, . . . , k.

(3) defines an idempotent resolution of the identity if each Pi is bi-potent, i = 1, 2, . . . , k.

We recall that a map P on a normed space X is said to be bi-potent if both P and I −P are

idempotent maps [13]. We also recall

Lemma 1.3. [13, Lemma 1.3] Let P be a map on a normed space X. If P is idempotent, then

(I − P )P = 0. Further, P is bi-potent if and only if P (I − P ) = 0.

Example 1.4. (1) Let C[0, 1] be the space of all real-valued continuous functions on [0, 1]

with the sup norm ‖.‖∞. Define P1, P2 : C[0, 1] → C[0, 1] by P1f(x) = max{f(x), 0} and

P2f(x) = min{f(x), 0}. Then C = {P1, P2} is an orthogonal partition of the identity by

idempotents. The collection C also defines an idempotent resolution of the identity.

(2) Let E1, E2, . . . , Ek be pairwise disjoint subsets of a normed spaces X such that X =
⋃k

i=1
Ei. For i = 1, 2, . . . , k, define Pi : X → X by Pi = I · χEi

, where χEi
is the char-

acteristic function of the set Ei. Then C = {P1, P2, . . . , Pk} is an orthogonal partition

which defines an idempotent resolution of the identity.

It is easy to see that if C = {P1, P2, . . . , Pk} is an orthogonal partition of the identity by

idempotents, then it is commuting. Our first result shows that the converse holds true.

Theorem A. Let C = {P1, P2, . . . , Pk}, k ≥ 2, be a finite collection of nonzero distinct idem-

potent maps on a normed space X which defines a partition of the identity by idempotents. If C

is a commuting partition of the identity by idempotents, then it is orthogonal.

Let T denotes the unit circle in the complex plane.

Definition 1.5. Let X be a complex normed space. Let C = {P1, P2, . . . , Pk}, k ≥ 2, be an

orthogonal partition which defines an idempotent resolution of the identity. Then C

(1) is said to be a family of k-circular bi-potents (kCB, for short), if
∑k

i=1
λiPi is a

surjective isometry on X for all λi ∈ T.

(2) is said to be a family of generalized k-circular bi-potents (GkCB, for short), corre-

sponding to a surjective isometry T on X if there exist distinct λ1, λ2, . . . , λk ∈ T such

that T =
∑k

i=1
λiPi.

Each Pi in (1) and (2) is called a k-circular bi-potent and a generalized k-circular bi-potent,

respectively.

Definition 1.6. Let X be a complex normed space. Let C = {P1, P2, . . . , Pk}, k ≥ 2, be an

orthogonal partition of the identity by idempotents. Then C
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(1) is said to be a family of k-circular idempotents (kCI, for short), if
∑k

i=1
λiPi is a

surjective isometry on X for all λi ∈ T.

(2) is said to be a family of generalized k-circular idempotents (GkCI, for short),

corresponding to a surjective isometry T on X if there exist distinct λ1, λ2, . . . , λk ∈ T

such that T =
∑k

i=1
λiPi.

Each Pi in (1) and (2) is called a k-circular idempotent and a generalized k-circular idem-

potent, respectively. We also say that C is a family of (generalized) k-circular idempotents

corresponding to the isometry T . We sometimes refer to T as the isometry associated with the

family C.

Our second result is the following.

Theorem B. Let C = {P1, P2, . . . , Pk}, k ≥ 2, be a family of k-circular idempotents on a

normed space X. Then each Pi is continuous, 1 ≤ i ≤ k.

Remark 1.7. (1) It is clear that (generalized) k-circular bi-potents are (generalized) k-

circular idempotents. Moreover, for k = 2, these two classes coincide, that is, P is

a (generalized) 2-circular bi-potent if and only if it is a (generalized) 2-circular idempo-

tent. Indeed, if P1 and P2 are idempotent maps such that P1 + P2 = I, then they are

bi-potents.

(2) 2-circular idempotents and generalized 2-circular idempotents will be referred as bi-

circular idempotents (bCI, for short) and generalized bi-circular idempotents (GbCI,

for short), respectively.

In the linear case, there is no distinction between Definitions 1.5 and 1.6, since every projection

is bi-potent. The linear version of the above classes of maps is known as k-circular projections

and generalized k-circular projections; see [1, 2, 6, 9, 10] and [11]. In the last two decades, these

classes of projections, especially for the case k = 2, have been studied extensively for various

Banach spaces. We refer interested readers to the papers [3, 8, 12, 14, 15] and the references

therein.

In [4, 5], Botelho and Miura described GbCI on the space of continuously differentiable

complex-valued functions on [0, 1]. The authors of this paper in [13] characterized GbCI on the

space SA of analytic functions on the open unit disc D whose derivative can be extended to the

closed unit disc D, and the space S∞ of analytic functions on D with bounded derivatives.

2. Proofs of Main Results

First we present the proof of Theorem A.

Proof of Theorem A. We first note that for k = 2, we have P1 + P2 = I and P1 + P2P1 = P1.

Hence P1P2 = P2P1 = 0.

Let C = {P1, P2, . . . , Pk}, k > 2, be a commuting partition. We will prove that
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n∏

i=1

Pαi
= 0; n = 2, 3, . . . , k, (2.1)

where αi ∈ {1, 2, . . . , k}, and are distinct.

Since C defines a partition of the identity, we have

k∑

i=1

Pi = I. (2.2)

First, we prove Equation (2.1) for n = k.

Multiplying Equation (2.2) by P1P2 · · ·Pk, from the commutativity assumption, we get

k∑

i=1

PiP1P2 · · ·Pk = P1P2 · · ·Pk,

=⇒
k∑

i=1

P1P2 · · ·Pk = P1P2 · · ·Pk,

=⇒ (k − 1)P1P2 · · ·Pk = 0,

=⇒

k∏

i=1

Pi = 0, (since k 6= 1). (2.3)

For the case n = k−1, we assume without loss of generality that αi 6= k, for all i = 1, . . . , k−1.

That is, we need to show

k−1∏

i=1

Pi = 0.

At this point, we multiply Equation (2.2) by P1P2 · · ·Pk−1 to get

k∑

i=1

PiP1P2 · · ·Pk−1 = P1P2 · · ·Pk−1.

This implies that

(k − 1)
k−1∏

i=1

Pi +
k∏

i=1

Pi =
k−1∏

i=1

Pi.

Using Equation (2.3), we conclude

k−1∏

i=1

Pi = 0, (since k 6= 2).

Continuing this process, suppose that we have proved Equation (2.1) for n = m+1. To prove

the result for n = m, we use the following steps.

Steps to prove Equation (2.1) for n = m, 2 ≤ m ≤ k − 2.

(1) Multiplying Equation (2.2) by Pα1
Pα2

· · ·Pαm
, we get the following equation
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k∑

i=1

PiPα1
Pα2

· · ·Pαm
= Pα1

Pα2
· · ·Pαm

.

(2) Separating those terms in the above equation in which i = αj, j = 1, . . . ,m, from others,

we have

∑

i=α1,...,αm

PiPα1
Pα2

· · ·Pαm
+

∑

i 6=α1,...,αm

PiPα1
Pα2

· · ·Pαm
= Pα1

Pα2
· · ·Pαm

.

(3) Using commutativity of Pis, we conclude

m Pα1
Pα2

· · ·Pαm
+

∑

i 6=α1,...,αm

PiPα1
Pα2

· · ·Pαm
= Pα1

Pα2
· · ·Pαm

.

(4) Since the product of an arbitrary (m + 1)-idempotents from C is 0, the second term of

the above equation vanishes. It follows that

(m− 1)

m∏

i=1

Pαi
= 0, or

m∏

i=1

Pαi
= 0.

This completes the proof of Theorem A. �

Before proceeding to the proof of Theorem B, we mention some properties of GkCI which

generalize some of the results proved for GbCI in [13].

Lemma 2.1. Let C = {P1, P2, . . . , Pk}, k ≥ 2, be a family of generalized k-circular idempotents

corresponding to a surjective isometry T such that T =
∑k

i=1
λiPi. Then TPi = λiPi for all

i = 1, 2, . . . , k.

Proof. Since T =
∑k

i=1
λiPi, multiply this equation by Pi and use the orthogonality of Pis to

get the desired result. �

Consider a family C = {P1, P2, . . . , Pk} of GkCI corresponding to a surjective isometry T .

Mazur-Ulam theorem states that some translation of T is a real linear isometry. In other words,

T = T (0)+S, where S is a real linear isometry on X. The next proposition shows that T maps

the origin to itself.

Proposition 2.2. Let C = {P1, P2, . . . , Pk}, k ≥ 2, be a family of generalized k-circular idem-

potents corresponding to a surjective isometry T . Then T (0) = 0. Moreover, T is real linear.

Proof. Let T =
∑k

i=1
λiPi, where λi are distinct modulus one complex numbers. By Mazur-

Ulam theorem, T = T (0) + S, where S is a real linear surjective isometry. By Lemma 2.1, we

have TPi = λiPi for i = 1, 2, . . . , k. It follows that T (0) +SPi = λiPi for i = 1, 2, . . . , k. Adding

these k equations, we obtain kT (0) +
∑k

i=1
SPi =

∑k
i=1

λiPi. Since S is real linear and the

collection C defines a partition of the identity, we conclude that kT (0) + S = T (0) + S. Hence,

T (0) = 0. This also shows that T is real linear. �
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Proof of Theorem B. Let C = {P1, P2, . . . , Pk}, k ≥ 2, be a family of k-circular idempotents on

X. Then for each i = 1, 2, . . . , k − 1 and λi
1
, λi

2
, . . . , λi

k ∈ T,

Ti = λi
1P1 + λi

2P2 + · · ·+ λi
kPk

is a surjective isometry on X. Moreover, I = P1+P2+ · · ·Pk. These equations can be described

by the matrix equation MP̃ = T̃, where

M =




1 1 . . . 1

λ1 λ2 . . . λk

...
...

...
...

λk−1

1
λk−1

2
. . . λk−1

k



, P̃ =




P1

P2

...

Pk




and T̃ =




I

T1

...

Tk−1



.

We observe that M is a Vandermonde matrix of order k and

det M =
∏

i>j

(λi − λj) 6= 0.

This implies that P̃ = M−1T̃. Since each isometry Ti is continuous, we conclude that each Pi

is continuous. �

The following corollary is immediate from Theorem B and Proposition 2.2.

Corollary 2.3. Let C = {P1, P2, . . . , Pk}, k ≥ 2, be a family of k-circular idempotents on a

normed space X. Then each Pi is real linear, i = 1, 2, . . . , k.

3. Considerations on Metric Projections

In this section, we consider an important class of idempotent maps called metric projections

and see when it is bi-potent.

Definition 3.1. Let K be a non-empty subset of a normed linear space X and let x ∈ X. The

metric projection of X onto K is the set-valued map defined by

PK(x) = {y ∈ K : ||x− y|| = dist(x,K)},

where dist(x,K) = infy∈K ||x− y||. The set K is called proximinal (resp. Chebyshev) if PK(x)

contains at least (resp. exactly) one point for every x ∈ X.

It is known that proximinal sets are closed. If X is a uniformly convex Banach space, then

any closed and convex subset of X is Chebyshev. If K is a Chebyshev set in X, then PK is

single-valued with range K. Moreover, if x ∈ K, then PK(x) = x. Thus, PK is idempotent. For

more on this topic, we refer the reader to the book by Deutsch [7].

Now, we present some necessary conditions for the bi-potency of metric projections.

Theorem 3.2. Let K be a Chebyshev set in a normed space X, and let PK be a bi-potent map.

Then the following statements are true.

(1) 0 ∈ K.
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(2) For every x ∈ Kc, x− PK(x) ∈ Kc, where Kc denotes the complement of K.

(3) 0 /∈ int(K).

(4) 0 ∈ Bdr(K), the boundary of K.

(5) If K is complete and convex, then it is not totally bounded.

Proof. (1) Since PK(I − PK) = 0 and range PK is K.

(2) Let x ∈ Kc such that x − PK(x) ∈ K. Then PK(I − PK)(x) = x − PK(x) 6= 0. Thus,

I − PK is not idempotent, a contradiction.

(3) Suppose 0 ∈ int(K), then there exists ǫ > 0 such that Bǫ(0) ⊂ K. Let y ∈ Bdr(K) and

x ∈ Bǫ(y) \ K. Then ‖x − PK(x)‖ ≤ ||x − y|| < ǫ. It follows that x − PK(x) ∈ K, a

contradiction.

(4) This is immediate, since K is closed and 0 /∈ int(K).

(5) On the contrary, we assume that K is totally bounded. Select z ∈ K such that ‖z‖ =

max{‖w‖ : w ∈ K}. It is clear that z ∈ Bdr(K). Moreover, 0 ∈ Bdr(K). Since

K is convex, the line segment joining 0 and z is contained in K. Consider a positive

ǫ < 1. Then ǫz ∈ K and (1 + ǫ)z ∈ Kc. We claim that PK((1 + ǫ)z) = z. If not, let

z1 = PK((1 + ǫ)z) with ‖z1 − (1 + ǫ)z‖ < ǫ‖z‖. Then

‖z1‖ = ‖z1 − (1 + ǫ)z + (1 + ǫ)z‖ ≥ (1 + ǫ)‖z‖ − ‖z1 − (1 + ǫ)z‖

> (1 + ǫ)‖z‖ − ǫ‖z‖ = ‖z‖.

This is not possible due to the choice of z. Therefore, PK((1 + ǫ)z) = z and (1 + ǫ)z −

PK((1 + ǫ)z) = (1 + ǫ)z − z = ǫz ∈ K, a contradiction due to assertion (2). Hence, K is

not totally bounded.

�

References

[1] A. B. Abu Baker and S. Dutta, Projections in the convex hull of three surjective isometries on C(Ω), J.

Math. Anal. Appl. 379 (2011), no. 2, 878–888.

[2] A. B. Abu Baker, Generalized 3-circular projections for unitary congruence invariant norms, Banach J. Math.

Anal. 10 (2016), no. 3, 451–465.

[3] F. Botelho and J. Jamison, Generalized bi-circular projections on minimal ideals of operators, Proc. Amer.

Math. Soc. 136 (2008), no. 4, 1397–1402.

[4] F. Botelho and T. Miura, Examples of generalized bi-circular idempotents on spaces of continuously differ-

entiable functions, J. Math. Anal. Appl. 465 (2018), no. 2, 795–802.

[5] F. Botelho and T. Miura, Corrigendum to “Examples of generalized bi-circular idempotents on spaces of

continuously differentiable functions” [J. Math. Anal. Appl. 465 (2018), no. 2, 795–802], J. Math. Anal.

Appl. 474 (2019) 1481–1487.
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[10] D. Ilǐsević, Generalized n-circular projections on JB*-triples, Contemp. Math. 687 (2017), 157–165.
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