Conditional Distributions and Independent random variables

1. Conditional Distributions

Definition 1. Let $\underline{Z} = (X, Y)$ be a random vector of discrete type with support E_Z , joint d.f. F_Z and joint p.m.f. f_Z . Then X and Y are discrete type random variables.

For a fixed y with $P(Y = y) > 0$, the function $f_{X|Y}(.|y) : \mathbb{R} \longrightarrow \mathbb{R}$ defined as

$$
f_{X|Y}(x|y) = P(X = x|Y = y), \ \forall \ x \in \mathbb{R},
$$

is called the conditional probability mass function of X, given $Y = y$. Thus, the conditional probability mass function of X, given $Y = y$, is

$$
f_{X|Y}(x|y) = P(X = x|Y = y) = \frac{P(X = x, Y = y)}{P(Y = y)} = \frac{f_Z(x, y)}{f_Y(y)} = \begin{cases} \frac{f_Z(x, y)}{f_Y(y)}, & \text{if } x \in E_{X|Y=y} \\ 0, & \text{otherwise,} \end{cases}
$$

where $E_{X|Y=y} = \{x \in \mathbb{R} \mid (x,y) \in E_Z\}$ and f_Y is the marginal p.m.f. of Y.

The conditional cumulative distribution function of X, given $Y = y$, is defined as

$$
F_{X|Y}(x|y) = P(X \le x|Y = y)
$$

=
$$
\frac{P(X \le x, Y = y)}{P(Y = y)}
$$

=
$$
\sum_{x_i \in E_{X|Y=y} \cap (-\infty, x]} \frac{f_Z(x_i, y)}{f_Y(y)}
$$

=
$$
\sum_{x_i \le x} f_{X|Y}(x_i|y), \text{ where } x_i \in E_{X|Y=y}.
$$

In the similar manner, we can define the conditional probability mass function and conditional cumulative distribution function of Y, given $X = x$, provided $P(X = x) > 0$.

Definition 2. Let $\underline{Z} = (X, Y)$ be a random vector of continuous type with joint c.d.f. $F_{\underline{Z}}$ and joint p.d.f. f_Z. Then X and Y are continuous type random variables. Let $y \in \mathbb{R}$ be such that $f_Y(y) > 0$, where $f_Y(y) > 0$ is the marginal p.d.f. of Y.

The function $f_{X|Y}(.|y) : \mathbb{R} \longrightarrow \mathbb{R}$ defined as

$$
f_{X|Y}(x|y) = \frac{f_Z(x,y)}{f_Y(y)}, \ \forall \ x \in \mathbb{R},
$$

is called the conditional probability density function of X, given $Y = y$.

Also, the conditional cumulative distribution function of X, given $Y = y$, is defined as

$$
F_{X|Y}(x|y) = \int_{-\infty}^{x} f_{X|Y}(t|y)dt
$$

$$
= \int_{-\infty}^{x} \frac{f_Z(t,y)}{f_Y(y)}dt
$$

In the similar manner, we can define the conditional probability density function and conditional cumulative distribution function of Y, given $\{X = x\}$, provided $f_X(x) > 0$, where $f_X(x) > 0$ is the marginal p.d.f. of X.

Note: Definition 1 and 2 can be generalized if we replace random variables X and Y by random vectors X and Y .

Example 3. Let $\underline{Z} = (X, Y)$ be a random vector with joint p.d.f.

$$
f(x,y) = \begin{cases} 6xy(2-x-y), & \text{if } 0 < x < 1, 0 < y < 1\\ 0, & \text{otherwise} \end{cases}
$$

Then find the conditional p.d.f. of X, given $Y = y$, where $0 < y < 1$.

Solution: The conditional p.d.f. of X, given $Y = y$, is

$$
f_{X|Y}(x|y) = \frac{f(x,y)}{f_Y(y)}
$$

=
$$
\begin{cases} \frac{6xy(2-x-y)}{\int_0^1 6xy(2-x-y)dx}, & \text{if } 0 < x < 1 \\ 0, & \text{otherwise} \end{cases}
$$

=
$$
\begin{cases} \frac{6x(2-x-y)}{4-3y}, & \text{if } 0 < x < 1 \\ 0, & \text{otherwise} \end{cases}
$$

Example 4. Let $\underline{Z} = (X, Y, Z)$ be a random vector with joint p.m.f.

$$
f(x, y, z) = \begin{cases} \frac{xyz}{72}, & \text{if } (x, y, z) \in \{1, 2\} \times \{1, 2, 3\} \times \{1, 3\} \\ 0, & \text{otherwise} \end{cases}
$$

- (1) Find the conditional p.m.f. of X, given $(Y, Z) = (2, 1)$.
- (2) Find the conditional p.m.f. of (X, Z) , given $Y = 3$.

Solution:

(1) The conditional p.m.f. of X, given $(Y, Z) = (2, 1)$, is

$$
f_{X|(Y,Z)}(x|(2,1)) = \frac{f(x,2,1)}{P((Y,Z)=(2,1))}
$$

=
$$
\begin{cases} \frac{2x}{72P(Y=2,Z=1)}, & \text{if } x \in E_{X|(Y,Z)=(2,1)} = \{x \in \mathbb{R} \mid (x,2,1) \in E_{\underline{Z}}\} \\ 0, & \text{otherwise} \end{cases}
$$

=
$$
\begin{cases} \frac{2x}{72P(Y=2,Z=1)}, & \text{if } x \in \{1,2\} \\ 0, & \text{otherwise} \end{cases}
$$

Now, $P(Y = 2, Z = 1) = \sum$ $x \in R_{(2,1)}$ $f(x, 2, 1)$, where $R_{(2,1)} = \{x \in \mathbb{R} \mid (x, 2, 1) \in$ $E_{\underline{Z}}$ } = {1, 2}. Hence, $P(Y = 2, Z = 1) = f(1, 2, 1) + f(2, 2, 1) = \frac{1}{12}$. Therefore,

$$
f_{X|(Y,Z)}(x|(2,1)) = \begin{cases} \frac{x}{3}, & \text{if } x \in \{1,2\} \\ 0, & \text{otherwise} \end{cases}
$$

(2) The conditional p.m.f. of (X, Z) , given $Y = 3$, is

$$
f_{(X,Z)|Y}((x,z)|3) = \frac{f(x,3,z)}{P(Y=3)}
$$

=
$$
\begin{cases} \frac{3xz}{72P(Y=3)}, & \text{if } x \in E_{X,Z||Y=3} = \{(x,z) \in \mathbb{R} \mid (x,3,z) \in E_{\mathbb{Z}}\} \\ 0, & \text{otherwise} \end{cases}
$$

=
$$
\begin{cases} \frac{3xz}{72P(Y=3)}, & \text{if } (x,z) \in \{1,2\} \times \{1,3\} \\ 0, & \text{otherwise} \end{cases}
$$

Now, $P(Y = 3) = \sum$ $(x,z) \in R_3$ $f(x, 3, z)$, where $R_3 = \{(x, z) \in \mathbb{R} \mid (x, 3, z) \in E_{Z}\}$ $\{1, 2\} \times \{1, 3\}$. Hence, $P(Y = 3) = f(1, 3, 1) + f(1, 3, 3) + f(2, 3, 1) + f(2, 3, 3) = \frac{1}{2}$. Therefore,

$$
f_{(X,Z)|Y}((x,z)|3) = \begin{cases} \frac{xz}{12}, & \text{if } x \in \{1,2\} \times \{1,3\} \\ 0, & \text{otherwise} \end{cases}
$$

2. Independent random variables

Definition 5. The random variables X_1, X_2, \ldots, X_n are said to be independent if for any sub-collection $\{X_{i_1}, X_{i_2}, \ldots, X_{i_k}\}, 2 \leq k \leq n$, we have

$$
F_{X_{i_1},\ldots,X_{i_k}}(x_1,x_2,\cdots,x_k) = \prod_{j=1}^k F_{X_{i_j}}(x_j), \ \forall \ (x_1,x_2,\cdots,x_k) \in \mathbb{R}^k
$$

where $F_{X_{i_1},...,X_{i_k}}$ is the joint c.d.f. of $(X_{i_1}, X_{i_2},..., X_{i_k})$ and $F_{X_{i_j}}$ is the marginal c.d.f. of X_{i_j} , for $1 \leq j \leq k$.

Theorem 6. Let $\underline{X} = (X_1, X_2, \ldots, X_n) : \mathcal{S} \longrightarrow \mathbb{R}^n$ be a n-dimensional $(n \geq 2)$ random vector with joint c.d.f. $F_{\underline{X}}$. Let F_{X_i} be the marginal c.d.f. of X_i , for $1 \leq i \leq n$. Then the random variables X_1, X_2, \ldots, X_n are independent if and only if

$$
F_{\underline{X}}(x_1, x_2, \cdots, x_n) = \prod_{i=1}^n F_{X_i}(x_i), \ \forall \ (x_1, x_2, \cdots, x_n) \in \mathbb{R}^n.
$$

Theorem 7. Let $\underline{X} = (X_1, X_2, \ldots, X_n) : \mathcal{S} \longrightarrow \mathbb{R}^n$ be a n-dimensional $(n \geq 2)$ random vector of either discrete or continuous type. Let f_X be the joint p.m.f. (or p.d.f.) of \underline{X} and f_{X_i} be the marginal p.m.f. (or p.d.f.) of random variable X_i , for $1 \leq i \leq n$. Then

(1) the random variables X_1, X_2, \ldots, X_n are independent if and only if

$$
f_{\underline{X}}(x_1, x_2, \cdots, x_n) = \prod_{i=1}^n f_{X_i}(x_i), \ \forall \ (x_1, x_2, \cdots, x_n) \in \mathbb{R}^n.
$$

(2) the random variables X_1, X_2, \ldots, X_n are independent $\Rightarrow E_X = \prod^n$ $\prod_{i=1} E_{X_i}$, where $E_{\underline{X}}$ is the support of random vector \underline{X} and E_{X_i} is the support of random variable X_i , for $1 \leq i \leq n$.

Theorem 8. Let X_1, X_2, \ldots, X_n be the independent random variables.

(1) Let $\psi_i : \mathbb{R} \longrightarrow \mathbb{R}$ be a function such that ψ_i^{-1} $i_{i}^{-1}(A) \in \mathbb{B}_{\mathbb{R}}$, for all $A \in \mathbb{B}_{\mathbb{R}}$, for $i = 1, 2, \dots, n$. Then the random variables $\psi_1(X_1), \psi_2(X_2), \dots, \psi_n(X_n)$ are independent.

(2) For $A_i \in \mathbb{B}_{\mathbb{R}}$, $i = 1, 2, \cdots, n$, we have

$$
P(\{X_i \in A_i, i = 1, 2, \cdots, n\}) = \prod_{i=1}^n P(\{X_i \in A_i\}).
$$

Remark 9. $\underline{X} = (X_1, X_2)$ be a random vector of either discrete or continuous type. Let $D = \{x_2 \in \mathbb{R} \mid f_{X_1|X_2}(.|x_2) \text{ is defined}\}\.$ Then for $x_2 \in D$, X_1 and X_2 are independent if and only if $f_{X_1|X_2}(x_1|x_2) = f_{X_1}(x_1)$, for all $x_1 \in \mathbb{R}$,

i.e,

 X_1 and X_2 are independent if and only if $\forall x_2 \in D$, the conditional distribution of X_1 , given $X_2 = x_2$, is the same as unconditional distribution of X_1 .

Example 10. Let $\underline{Z} = (X, Y, Z)$ be a random vector with joint p.m.f.

$$
f(x, y, z) = \begin{cases} \frac{xyz}{72}, & \text{if } (x, y, z) \in \{1, 2\} \times \{1, 2, 3\} \times \{1, 3\} \\ 0, & \text{otherwise} \end{cases}
$$

- (1) Are X, Y and Z independent random variables?
- (2) Are X and Z independent random variables?

Solution:

(1) The supports of X, Y and Z are

$$
E_X = \{x \in \mathbb{R} \mid (x, y, z) \in E_{\mathbb{Z}} \text{ for some } (y, z) \in \mathbb{R}^2\} = \{1, 2\}
$$

$$
E_Y = \{y \in \mathbb{R} \mid (x, y, z) \in E_{\mathbb{Z}} \text{ for some } (x, z) \in \mathbb{R}^2\} = \{1, 2, 3\}
$$

and

$$
E_Z = \{ z \in \mathbb{R} \mid (x, y, z) \in E_{\underline{Z}} \text{ for some } (x, y) \in \mathbb{R}^2 \} = \{1, 3\},\
$$

respectively. For $x \in E_X$, $R_x = \{(y, z) \in \mathbb{R}^2 \mid (x, y, z) \in E_{\mathbb{Z}}\} = \{1, 2, 3\} \times \{1, 3\}.$ So the marginal p.m.f. of X is

$$
f_X(x) = \begin{cases} \sum_{(y,z)\in R_x} f(x, y, z), & \text{if } x \in E_X\\ 0, & \text{otherwise} \end{cases}
$$

$$
= \begin{cases} \frac{x}{3}, & \text{if } x \in \{1, 2\} \\ 0, & \text{otherwise} \end{cases}
$$

Similarly the marginal p.m.f. of Y and Z are

$$
f_Y(y) = \begin{cases} \frac{y}{6}, & \text{if } y \in \{1, 2, 3\} \\ 0, & \text{otherwise} \end{cases}
$$

and

$$
f_Z(z) = \begin{cases} \frac{z}{4}, & \text{if } y \in \{1, 3\} \\ 0, & \text{otherwise} \end{cases}
$$

respectively. Clearly $f(x, y, z) = f_X(x) f_Y(y) f_Z(z)$, for all $(x, y, z) \in \mathbb{R}^3$. Thus X, Y and Z are independent.

(2) Let $\underline{X} = (X, Y)$. The support of \underline{X} is $E_{\underline{X}} = \{(x, z) \in \mathbb{R}^2 \mid (x, y, z) \in E_{\underline{Z}}\}$ for some $y \in \underline{Z}$ $\mathbb{R} = \{1, 2\} \times \{1, 3\}.$ For $(x, z) \in E_X, R_{(x, z)} = \{x \in \mathbb{R} \mid (x, y, z) \in E_Z\} = \{1, 2, 3\}.$

So the marginal p.m.f. of \underline{X} is

$$
f_{\underline{X}}(x, z) = \begin{cases} \sum_{y \in R_{(x,z)}} f(x, y, z), & \text{if } (x, z) \in E_{\underline{X}} \\ 0, & \text{otherwise} \end{cases}
$$

$$
= \begin{cases} \frac{xz}{12}, & \text{if } (x, z) \in \{1, 2\} \times \{1, 3\} \\ 0, & \text{otherwise} \end{cases}
$$

Thus $f_X(x, z) = f_X(x) f_Z(z)$, for all $(x, z) \in \mathbb{R}^2$. Thus X and Z are independent.

Example 11. Let $\underline{Z} = (X, Y)$ be a random vector with joint p.d.f.

$$
f_{\underline{Z}}(x,y) = \begin{cases} \frac{1}{x}, & \text{if } 0 < y < x < 1 \\ 0, & \text{otherwise.} \end{cases}
$$

Are X and Y independent?

Solution: By Example 7 of Lecture 14, the marginal p.d.f. of X and Y are

$$
f_X(x) = \begin{cases} 1, & \text{if } 0 < x < 1 \\ 0, & \text{otherwise} \end{cases}
$$

and

$$
f_Y(y) = \begin{cases} -\ln y, & \text{if } 0 < y < 1 \\ 0, & \text{otherwise} \end{cases}
$$

Clearly, $f_{\mathbf{Z}}(x, y) \neq f_X(x) f_Y(y)$. Hence, X and Y are not independent.

Alternative solution: The support of Z is $E_Z = \{(x, y) \in \mathbb{R}^2 \mid 0 < y < x < 1\}$, and the support of X and Y are $(0, 1)$. Hence, $E_{\mathcal{Z}} \neq E_X \times E_Y$. Therefore, X and Y are not independent.