INDIAN INSTITUTE OF INFORMATION TECHNOLOGY, ALLAHABAD

Mid-Semester Examination, September 2017

Date of Examination: 24/ 09/17 (2nd Session)

Program Code \& Semester: M.Tech.(BI), M. Tech.-PhD(BI)-1st Sem/ All PhD -PhD

Paper Title: Biological data analytics Paper Code: SBDA131C

Paper Setter: Dr. Srijit Bhattacharjee

Max Marks: 30
Duration: 2 hours
Note: Use of non-programmable calculator is allowed. Be sure to carefully justify your answers. Total 5 problems are there each carrying 6 marks. The table of standard normal CDF values is provided.

1. (a) In a certain high school class, consisting of 60 girls and 40 boys, it is observed that 24 girls and 16 boys wear eyeglasses. If a student is picked at random from this class, the probability that the student wears eyeglasses, $P(E)$, is $40 / 100$, or .4. What is the probability that a student picked at random wears eyeglasses, given that the student is a boy? Comment on the independence of the events being a boy and wearing eyeglasses. [2]
(b) Suppose 85% of hypertensive and 22% of normotensive are classified as hypertensive by an automated bloodpressure machine. What are the predictive value positive and predictive value negative of the machine, assuming 20% of the adult population is hypertensive?
2. A biased die has probabilities $p / 2, p, p, p, p, 2 p$ of showing $1,2,3,4,5,6$ respectively. Find p. Find the mean and variance of the outcomes. Compute the moment generating function for this probability mass function.
3. Roll a dice $(n=1,2, \ldots 6)$. Two events s_{1} and s_{2} are defined as follows:

$$
\begin{align*}
& s_{1}= \begin{cases}1 & \text { if } n=1,2,3 \\
-1 & \text { if } n=4,5,6\end{cases} \\
& s_{2}= \begin{cases}1 & \text { if } n=2,4,6 \\
-1 & \text { if } n=1,3,5\end{cases} \tag{6}
\end{align*}
$$

Find $\operatorname{Cov}\left(s_{1}, s_{2}\right)$ and correlation coefficient between s_{1} and s_{2}.
4. Diskin et al. studied common breath metabolites such as ammonia, acetone, isoprene, ethanol, and acetaldehyde in five subjects over a period of 30 days. Each day, breath samples were taken and analyzed in the early morning on arrival at the laboratory. For subject A, a 27 -year-old female, the ammonia concentration in parts per billion (ppb) followed a normal distribution over 30 days with mean 491 and standard deviation 119. What is the probability that on a random day, the subjects ammonia concentration is between 292 and 649 ppb ? What is the probability that the subject's amonia concentration exceeds 391 ppb ?
5. The ideal size of a first-year class at a particular college is 150 students. The college, knowing from past experience that, on the average, only 30 percent of those accepted for admission will actually attend, uses a policy of approving the applications of 450 students. Compute the probability (approximate) that more than 150 first-year students attend this college. Also compute the approximate probability that number of students attend the college lies between 120 and 280 .

STANDARD NORMAL DISTRIBUTION: Table Values Represent AREA to the LEFT of the Z score.

Z	. 00	. 01	. 02	. 03	. 04	. 05	. 06	. 07	. 08	. 09
-3.9	. 00005	. 00005	. 00004	. 00004	. 00004	. 00004	. 00004	. 00004	. 00003	. 00003
-3.8	. 00007	. 00007	. 00007	. 00006	. 00006	. 00006	. 00006	. 00005	. 00005	. 00005
-3.7	. 00011	. 00010	. 00010	. 00010	. 00009	. 00009	. 00008	. 00008	. 00008	. 00008
-3.6	. 00016	. 00015	. 00015	. 00014	. 00014	. 00013	. 00013	. 00012	. 00012	. 00011
-3.5	. 00023	. 00022	. 00022	. 00021	. 00020	. 00019	. 00019	. 00018	. 00017	. 00017
-3.4	. 00034	. 00032	. 00031	. 00030	. 00029	. 00028	. 00027	. 00026	. 00025	. 00024
-3.3	. 00048	. 00047	. 00045	. 00043	. 00042	. 00040	. 00039	. 00038	. 00036	. 00035
-3.2	. 00069	. 00066	. 00064	. 00062	. 00060	. 00058	. 00056	. 00054	. 00052	. 00050
-3.1	. 00097	. 00094	. 00090	. 00087	. 00084	. 00082	. 00079	. 00076	. 00074	. 00071
-3.0	. 00135	. 00131	. 00126	. 00122	. 00118	. 00114	. 00111	. 00107	. 00104	. 00100
-2.9	. 00187	. 00181	. 00175	. 00169	. 00164	. 00159	. 00154	. 00149	. 00144	. 00139
-2.8	. 00256	. 00248	. 00240	. 00233	. 00226	. 00219	. 00212	. 00205	. 00199	. 00193
-2.7	. 00347	. 00336	. 00326	. 00317	. 00307	. 00298	. 00289	. 00280	. 00272	. 00264
-2.6	. 00466	. 00453	. 00440	. 00427	. 00415	. 00402	. 00391	. 00379	. 00368	. 00357
-2.5	. 00621	. 00604	. 00587	. 00570	. 00554	. 00539	. 00523	. 00508	. 00494	. 00480
-2.4	. 00820	. 00798	. 00776	. 00755	. 00734	. 00714	. 00695	. 00676	. 00657	. 00639
-2.3	. 01072	. 01044	. 01017	. 00990	. 00964	. 00939	. 00914	. 00889	. 00866	. 00842
-2.2	. 01390	. 01355	. 01321	. 01287	. 01255	. 01222	. 01191	. 01160	. 01130	. 01101
-2.1	. 01786	. 01743	. 01700	. 01659	. 01618	. 01578	. 01539	. 01500	. 01463	. 01426
-2.0	. 02275	. 02222	. 02169	. 02118	. 02068	. 02018	. 01970	. 01923	. 01876	. 01831
-1.9	. 02872	. 02807	. 02743	. 02680	. 02619	. 02559	. 02500	. 02442	. 02385	. 02330
-1.8	. 03593	. 03515	. 03438	. 03362	. 03288	. 03216	. 03144	. 03074	. 03005	. 02938
-1.7	. 04457	. 04363	. 04272	. 04182	. 04093	. 04006	. 03920	. 03836	. 03754	. 03673
-1.6	. 05480	. 05370	. 05262	. 05155	. 05050	. 04947	. 04846	. 04746	. 04648	. 04551
-1.5	. 06681	. 06552	. 06426	. 06301	. 06178	. 06057	. 05938	. 05821	. 05705	. 05592
-1.4	. 08076	. 07927	. 07780	. 07636	. 07493	. 07353	. 07215	. 07078	. 06944	. 06811
-1.3	. 09680	. 09510	. 09342	. 09176	. 09012	. 08851	. 08691	. 08534	. 08379	. 08226
-1.2	. 11507	. 11314	. 11123	. 10935	. 10749	. 10565	. 10383	. 10204	. 10027	. 09853
-1.1	. 13567	. 13350	. 13136	. 12924	. 12714	. 12507	. 12302	. 12100	. 11900	. 11702
-1.0	. 15866	. 15625	. 15386	. 15151	. 14917	. 14686	. 14457	. 14231	. 14007	. 13786
-0.9	. 18406	. 18141	. 17879	. 17619	. 17361	. 17106	. 16853	. 16602	. 16354	. 16109
-0.8	. 21186	. 20897	. 20611	. 20327	. 20045	. 19766	. 19489	. 19215	. 18943	. 18673
-0.7	. 24196	. 23885	. 23576	. 23270	. 22965	. 22663	. 22363	. 22065	. 21770	. 21476
-0.6	. 27425	. 27093	. 26763	. 26435	. 26109	. 25785	. 25463	. 25143	. 24825	. 24510
-0.5	. 30854	. 30503	. 30153	. 29806	. 29460	. 29116	. 28774	. 28434	. 28096	. 27760
-0.4	. 34458	. 34090	. 33724	. 33360	. 32997	. 32636	. 32276	. 31918	. 31561	. 31207
-0.3	. 38209	. 37828	. 37448	. 37070	. 36693	. 36317	. 35942	. 35569	. 35197	. 34827
-0.2	. 42074	. 41683	. 41294	. 40905	. 40517	. 40129	. 39743	. 39358	. 38974	. 38591
-0.1	. 46017	. 45620	. 45224	. 44828	. 44433	. 44038	. 43644	. 43251	. 42858	. 42465
-0.0	. 50000	. 49601	. 49202	. 48803	. 48405	. 48006	. 47608	. 47210	. 46812	. 46414

Faculty Signature:

