Problem Set-3

Special probability mass functions and density functions, covariance and correlation
Date:08/09/2017

1. What is the probability of getting at least one 6 in throwing of a dice 10 times?
2. Toss a fair coin M times. (a) Move one step forward (in one particular direction) each time you get a head (H). What is the probability $P(n)$ that you are n steps away from where you have started?
(b) If you move one step forward for each H and one step backward for each tail (T), what is $P(n)$? What is the mean and variance of the probability mass function (PMF)? Find the mode of PF for $M=3$?
3. Let X be a Binomial random variable with parameters n, and p. Show that

$$
P(X=x+1)=\frac{p}{1-p}\left(\frac{n-x}{x+1}\right) P(X=x)
$$

4. In a 10 -over cricket match, the runs that can be scored by a poor batsman is given by a Poisson distribution with parameter $\lambda=10$. On the other hand, the runs that a good batsman can score is given by a Poisson distribution with parameter $\lambda=30$. If a batsman scores 20 runs in the match, would you judge him as good or poor?
5. Let X be a Poisson random variable with parameter $\lambda>0$. then show that $E\left(2^{X}\right)=\frac{1}{P(X=0)}$
6. An investigator notices that children develop chronic bronchitis in the first year of life in about 3 out of 20 households where both parents are chronic bronchitis, as compared to the national incidence rate of chronic bronchitis, which is 5% in the first year of life. How likely are infants in at least 3 out of 20 households will develop chronic bronchitis if probability of developing the disease in any one household is .05 ?
7. A probability class has 300 students and each student has probability $1 / 3$ of getting an A, independently of any other student. What is the mean of X, the number of students that get an A?
8. If X is a normal random variable with mean μ and variance σ^{2}, and if a, b are scalars, then show that the random variable

$$
Y=a X+b
$$

is also normal with mean $a \mu+b$ and variance $a^{2} \sigma^{2}$.
9. What is the probability that a z picked at random from the population of z 's will have a value between -2.5 and 2.5?
10. Two continuous random variables X and Y have a joint probability distribution function

$$
f(x, y)=A(x+y)
$$

where A is a constant and $0 \leq x \leq 1 ; 0 \leq y \leq 1$.
(a) Determine A.
(b) Calculate the correlation $(\operatorname{Cov}(X, Y))$ between X and Y.
11. Roll a dice $(n=1,2, \ldots 6)$. Two events s_{1} and s_{2} are defined as follows:

$$
\begin{aligned}
& s_{1}= \begin{cases}1 & \text { if } n=2,4,6 \\
-1 & \text { if } n=1,3,5\end{cases} \\
& s_{2}= \begin{cases}1 & \text { if } n=3,6 \\
-1 & \text { if } n=1,2,4,5\end{cases}
\end{aligned}
$$

Show that $<s_{1} s_{2}>=<s_{1}><s_{2}>$. Show that $P\left(s_{1}, s_{2}\right)=P_{1}\left(s_{1}\right) P_{2}\left(s_{2}\right)$. So s_{1} and s_{2} are uncorrelated.
12. Repeat 1 with the following s_{1} and s_{2} to show that the events are correlated. Find $\operatorname{Cov}\left(s_{1}, s_{2}\right)$ and correlation coefficient.

$$
\begin{aligned}
& s_{1}= \begin{cases}1 & \text { if } n=1,2,3 \\
-1 & \text { if } n=4,5,6\end{cases} \\
& s_{2}= \begin{cases}1 & \text { if } n=2,4,6 \\
-1 & \text { if } n=1,3,5\end{cases}
\end{aligned}
$$

Table of Standard Normal Cumulative Probabilities

z	-3.0									
$\Phi(z)$	0.001									
z	-2.9	-2.8	-2.7	-2.6	-2.5	-2.4	-2.3	-2.2	-2.1	-2.0
$\Phi(z)$	0.002	0.003	0.003	0.005	0.006	0.008	0.011	0.014	0.018	0.023
z	-1.9	-1.8	-1.7	-1.6	-1.5	-1.4	-1.3	-1.2	-1.1	-1.0
$\Phi(z)$	0.029	0.036	0.045	0.055	0.067	0.081	0.097	0.115	0.136	0.159
z	-0.9	-0.8	-0.7	-0.6	-0.5	-0.4	-0.3	-0.2	-0.1	0.0
$\Phi(z)$	0.184	0.212	0.242	0.274	0.309	0.345	0.382	0.421	0.460	0.500
z	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
$\Phi(z)$	0.500	0.540	0.579	0.618	0.655	0.691	0.726	0.758	0.788	0.816
z	1.0	1.1	1.2	1.3	1.4	1.5	1.6	1.7	1.8	1.9
$\Phi(z)$	0.841	0.864	0.885	0.903	0.919	0.933	0.945	0.955	0.964	0.971
z	2.0	2.1	2.2	2.3	2.4	2.5	2.6	2.7	2.8	2.9
$\Phi(z)$	0.977	0.982	0.986	0.989	0.992	0.994	0.995	0.997	0.997	0.998
z	3.0									
$\Phi(z)$	0.999									

