INDIAN INSTITUTE OF INFORMATION TECHNOLOGY, ALLAHABAD

Mid Semester Examination: February 27, 2018

Paper code: SGNR210E
Paper Title: General Relativity
Paper Setter: Dr. Srijit Bhattacharjee

Max Marks: 30
Duration : 2 hours
Attempt all the parts of a question at the same place. Number indicated on the right in [] is full marks of that particular problem. There is no credit for an answer if proper justification is not given, even if the answer is correct. Notations are standard. Do not write anything on question paper and cover pages except your details.

1. (a) Show that the closed interval $A=[a, b]$ is homeomorphic to the closed unit interval $I=[0,1]$.
(b) Prove that image of a compact topological space X under a continuous map $f: X \rightarrow Y$, is also compact. $[2+3]$
2. Show that unit 2 -sphere $\left(S^{2}\right)$ is a differentiable manifold by constructing a 2 -charted atlas. Find the normalized basis vectors of the tangent space at any point p on S^{2}.
[6+4]
3. (a) Find the components of the commutator of two smooth vector fields U and V in a manifold, in any coordinate basis.
(b) Let U, V, W be three smooth vector fields on a manifold. Show that their commutators satisfy the Jacobi identity:

$$
[[U, V], W]+[[V, W], U]+[[W, U], V]=0 .
$$

(c) Let Y_{1}, \ldots, Y_{n} be smooth vector fields on an n-dimensional manifold M such that at each $p \in M$ they form a basis of the tangent space $T_{p} M \equiv V_{p}$. Then, at each point, we may expand each commutator $\left[Y_{\alpha}, Y_{\beta}\right]$ in this basis, thereby defining the functions $C_{\alpha \beta}^{\gamma}=-C_{\beta \alpha}^{\gamma}$ by

$$
\left[Y_{\alpha}, Y_{\beta}\right]=C_{\alpha \beta}^{\gamma} Y_{\gamma} .
$$

Use Jacobi identity to derive an equation satisfied by the functions $C_{\alpha \beta}^{\gamma}$.
(d) Let $v_{1} \ldots . . v_{n}$ be a basis of the vector space V, and let $v^{1 *}, \ldots . v^{n *}$ be its dual basis. Let $X \in V$ and let $\omega \in V^{*}$. Show that

$$
\begin{align*}
X & =\Sigma_{\alpha} v^{\alpha *}(X) v_{\alpha}, \\
\omega & =\Sigma_{\alpha} \omega\left(v_{\alpha}\right) v^{\alpha *} . \tag{2+3+2+3}
\end{align*}
$$

4. Suppose f be a differentiable function on \Re^{3} defined as,

$$
f(x, y, z)=\left(x^{2}-1\right) y+\left(y^{2}+2\right) z .
$$

Let $V_{p}=\left(v_{1}, v_{2}, v_{3}\right)$ be a smooth vector field on \Re^{3}. Find $V_{p}[f]$, at $\mathbf{p}=(\mathbf{1},-\mathbf{1}, \mathbf{2})$. Evaluate the same for $V_{p}=(1,2,-3)$. What is the interpretation of $d f$ in a differentiable manifold?

